Abstract
A facile synthesis route for the preparation of N-doped ordered mesoporous carbons (NOMCs) containing well-dispersed, highly stable Pt nanoparticles (NPs) is reported. The synthesis of these mesostructured Pt-NOMC materials invokes pyrolysis of co-fed carbon sources and Pt precursors in 3-[2-(2-aminoethylamino) ethylamino]propyl-functionalized mesoporous SBA-15 silicas, which served simultaneously as N sources and hard templates. It was found that the dispersion of Pt NPs increases with increasing N content in the Pt-NOMC nanocomposites, leading to higher electrocatalytic activity during oxygen reduction reaction (ORR) and methanol-tolerant stability compared to typical commercial electrocatalyst (Pt/XC-72). The superior electrochemical performances observed for the synthesized Pt-NOMCs have been attributed to the dispersion and unique nanostructure of Pt NPs particularly in the presence of pyridinic-N atoms in the mesoporous carbon supports.
Original language | English |
---|---|
Pages (from-to) | 12489-12496 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry |
Volume | 21 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2011 Sept 7 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Materials Chemistry