Fabrication and performance analysis of film bulk acoustic wave resonators

Cheng-Liang Huang, Kok Wan Tay, Long Wu

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

In this paper, a radio frequency reactive sputtering deposition technique for piezoelectric aluminum nitride (AlN) thin film formation on a gold (Au) bottom electrode and its successful application in a film bulk acoustic resonator (FBAR) are investigated. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements show that the AlN films were deposited onto an Au bottom electrode with highly c-axis-preferred orientation, well-textured columnar structure with a fairly uniform grain size of approximately 83 nm. The roughness is measured at a root-mean square (RMS) value of 5.4 nm and the average peak to valley of each grain column is 46.3 nm. The FBAR consists of an AlN piezoelectric thin film sandwiched between Au electrodes, all of which lie on a thin low-stress silicon nitride which serves as a support membrane on silicon. The performance of FBAR device exhibits a significant of the series quality factor (Qs), the parallel quality factor (Qp), the effective electromechanical coupling coefficient (keff2), and the bandwidths are 97, 120, 5.1%, and 24 MHz, respectively.

Original languageEnglish
Pages (from-to)1012-1016
Number of pages5
JournalMaterials Letters
Volume59
Issue number8-9
DOIs
Publication statusPublished - 2005 Apr 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Fabrication and performance analysis of film bulk acoustic wave resonators'. Together they form a unique fingerprint.

Cite this