Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine

Chengfeng Xue, Kai Min Hsu, Chen Yaw Chiu, Yu Kaung Chang, I. Son Ng

Research output: Contribution to journalArticlepeer-review

Abstract

A green bioprocess for the fabrication of nanofiber membranes from the biomaterial polyamide 56 (PA56) via electrospinning was proposed. Cadaverine, as the precursor of PA56, was first produced from recombinant Escherichia coli using the whole-cell biotransformation of lysine. PA56 was then fabricated by mixing adipic acid with purified cadaverine obtained from solvent extraction and distillation. The thermal properties of the fabricated PA56 are as follows: a melting point of 250 °C, a crystallization point of 220 °C, and a degradation temperature of 410 °C. A PA56 nanofiber membrane (PAM) was further prepared via electrospinning. Dyed membranes (P-Dye) were obtained by the reaction of Reactive Red 141 dye with the amino group of PAM. Poly-(hexamethylene biguanide) (PHMB) was attached to the P-Dye to create P-Dye-PHMB. On the other hand, PAM with alginate, used to facilitate PHMB attachment (P-Alg-PHMB), was compared with P-Dye-PHMB in terms of antibacterial activity against pathogenic strains of E. coli and Pseudomonas putida. P-Alg-PHMB showed excellent antibacterial efficiency for E. coli (97%) and P. putida (100%). The proposed bioprocess can be used to fabricate novel membranes for biomedical applications and functional textiles.

Original languageEnglish
Article number128967
JournalChemosphere
Volume266
DOIs
Publication statusPublished - 2021 Mar

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine'. Together they form a unique fingerprint.

Cite this