Abstract
A facile synthesis procedure based on chemical vapor deposition (CVD) process has been developed to fabricate carbon nanotubes (CNTs) with controlled diameters and high yields utilizing Fe-containing ordered hexagonal mesoporous silicas (HMSs) such as MCM-41 and SBA-15 having varied pore sizes as the catalysts as well as the templates. It is found that unlike Fe/HMS catalysts prepared by co-precipitation method, samples prepared by the impregnation method gave rise to multi-wall CNTs with uniform diameters, which were largely dictated by the pore size of the Fe/HMS catalysts. Among these uniform MWCNTs, sample with a larger diameter (≥ 8 nm) was found to be more favorable as support for Pt catalyst, leading to a homogeneous dispersion of metal nanoparticles. Consequently, the Pt/CNT electrocatalysts so prepared gave rise to superior methanol oxidation activities as well as tolerances for CO poisoning compared to Pt supported on commercial single-wall CNT (Pt/SWCNT) and XC-72 activated carbon (Pt/XC-72) having a similar metal loading.
Original language | English |
---|---|
Pages (from-to) | 343-350 |
Number of pages | 8 |
Journal | Diamond and Related Materials |
Volume | 20 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2011 Mar |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Mechanical Engineering
- Materials Chemistry
- Electrical and Electronic Engineering