Abstract
A novel method based on femtosecond laser-induced forward transfer for high-throughput and efficient fabrication of periodic multilayer plasmonic metamaterials is demonstrated. With precisely controlling laser raster path applied on sputtered multilayer thin films, the laser-ablated materials can be transferred to another substrate leaving the fabricated multilayer structure on the original substrate. Subsequently, three-dimensional metamaterials can be made by multilayer structuring. Moreover, all the experimental results show that to create such multilayer split resonant rings (SRRs) with uniform profile, the laser fluence should be fine controlled under proper conditions. The optical property of fabricated multilayer SRR array is investigated by optical measurements and finite-difference time-domain simulations, showing various resonant modes in the middle-IR region. The calculated induced current distributions exhibit rich resonance properties of the structures as well. This work markedly extends the laser direct writing technique to a wide application in fabricating complicated metamaterials and plasmonic devices efficiently.
Original language | English |
---|---|
Pages (from-to) | 702-707 |
Number of pages | 6 |
Journal | Laser and Photonics Reviews |
Volume | 6 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2012 Sept |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics