TY - JOUR
T1 - Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures
AU - Wu, Ken Jer
AU - Lo, Yung Chung
AU - Chen, Shing Der
AU - Chang, Jo Shu
PY - 2007/1/1
Y1 - 2007/1/1
N2 - In this work, a continuously stirred tank bioreactor (CSTBR) was used to produce gaseous (hydrogen) and liquid (ethanol) biofuels simultaneously from carbohydrate substrates using immobilized anaerobic sludge with polyethylene-octene-elastomer (POE) matrix. The continuous culture was operated by sequential decrease and increase of hydraulic retention time (HRT) to assess the effect of HRT shifting on the efficiency of H2 and ethanol production. The experimental results show that during HRT-decreasing operation, using sucrose as the carbon substrate resulted in increasing H2 and ethanol production with an increase in organic loading rate or a decrease in HRT. The best biofuel-producing performance occurred during HRT decrease, giving the highest H2 production rate and yield of 37.4 mmol/h/L and 1.18 mol H2/(mol(hexose)), respectively (at 4 h HRT), as well as a maximal ethanol production of 84.1 mmol/h/L and 0.9 mol ethanoll(mol(hexose)) (at 0.5 h HRT). For continuous cultures fed with glucose-based medium, the biofuel production rate and yield was lower than those from using sucrose, and the dependence of biofuels production on HRT shifting had a slightly different trend. Ethanol production with glucose-feeding cultures seemed to be optimal during a HRT increase (HRT = 1 h), but H2 production reached maximum during a decreasing HRT (HRT = 1 h). For all the continuous cultures, ethanol was the predominant soluble metabolite, accounting for 35-78% of total soluble microbial products, while production of acetate and butyrate was less significant. Calculation of total energy generation resulting from combination of the two biofuels shows that the best energy generation rate (116 kJ/h/L) and yield (1235 kJ/(mol(hexose))) was obtained during HRT decreasing (HRT = 0.5 h) while using sucrose was the carbon substrate.
AB - In this work, a continuously stirred tank bioreactor (CSTBR) was used to produce gaseous (hydrogen) and liquid (ethanol) biofuels simultaneously from carbohydrate substrates using immobilized anaerobic sludge with polyethylene-octene-elastomer (POE) matrix. The continuous culture was operated by sequential decrease and increase of hydraulic retention time (HRT) to assess the effect of HRT shifting on the efficiency of H2 and ethanol production. The experimental results show that during HRT-decreasing operation, using sucrose as the carbon substrate resulted in increasing H2 and ethanol production with an increase in organic loading rate or a decrease in HRT. The best biofuel-producing performance occurred during HRT decrease, giving the highest H2 production rate and yield of 37.4 mmol/h/L and 1.18 mol H2/(mol(hexose)), respectively (at 4 h HRT), as well as a maximal ethanol production of 84.1 mmol/h/L and 0.9 mol ethanoll(mol(hexose)) (at 0.5 h HRT). For continuous cultures fed with glucose-based medium, the biofuel production rate and yield was lower than those from using sucrose, and the dependence of biofuels production on HRT shifting had a slightly different trend. Ethanol production with glucose-feeding cultures seemed to be optimal during a HRT increase (HRT = 1 h), but H2 production reached maximum during a decreasing HRT (HRT = 1 h). For all the continuous cultures, ethanol was the predominant soluble metabolite, accounting for 35-78% of total soluble microbial products, while production of acetate and butyrate was less significant. Calculation of total energy generation resulting from combination of the two biofuels shows that the best energy generation rate (116 kJ/h/L) and yield (1235 kJ/(mol(hexose))) was obtained during HRT decreasing (HRT = 0.5 h) while using sucrose was the carbon substrate.
UR - http://www.scopus.com/inward/record.url?scp=39149129658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=39149129658&partnerID=8YFLogxK
U2 - 10.1016/j.jcice.2007.04.006
DO - 10.1016/j.jcice.2007.04.006
M3 - Article
AN - SCOPUS:39149129658
VL - 38
SP - 205
EP - 213
JO - Journal of the Taiwan Institute of Chemical Engineers
JF - Journal of the Taiwan Institute of Chemical Engineers
SN - 1876-1070
IS - 3-4
ER -