Abstract
The flow of a continuously stratified fluid over a smooth bottom bump in a channel of finite depth is considered. In the weakly nonlinear-weakly dispersive régime ε = a/h ≪ 1, μ = h/l ≪ 1 (where h is the channel depth and a, l are the peak amplitude and the width of the obstacle respectively), the parameter A = ε/μp (where p> O depends on the obstacle shape) controls the effect of nonlinearity on the steady lee wavetrain that forms downstream of the obstacle for subcritical flow speeds. For A = ο(1), when nonlinear and dispersive effects are equally important, the interaction of the long-wave disturbance over the obstacle with the lee wave is fully nonlinear, and techniques of asymptotics 'beyond all orders' are used to determine the (exponentially small as μ→0) lee-wave amplitude. Comparison with numerical results indicates that the asymptotic theory often remains reasonably accurate even for moderately small values of μ and ε, in which case the (formally exponentially small) lee-wave amplitude is greatly enhanced by nonlinearity and can be quite substantial. Moreover, these findings reveal that the range of validity of the classical linear lee-wave theory (A ≪ 1) is rather limited.
Original language | English |
---|---|
Pages (from-to) | 147-170 |
Number of pages | 24 |
Journal | Journal of Fluid Mechanics |
Volume | 308 |
DOIs | |
Publication status | Published - 1996 Feb 10 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Applied Mathematics