Finite element analysis of a polymeric liquid passing over a transverse slot

Research output: Contribution to journalArticle

Abstract

The phenomenon of hole pressure occurs whenever a polymeric or viscoelastic liquid flows over a depression in a conduit wall. Numerical simulation of the upper-convected Maxwell fluid passing over a transverse slot is considered herein. This fluid is a typical model for the non-Newtonian behavior of some polymeric liquid. Results are computed by an elastic-viscous split stress finite element method, a mixed finite element method, incorporating the non-consistent streamline upwind scheme. As a verification of the numerical scheme, the hole-pressure is evaluated for various Deborah number (De), and is compared with the analytical prediction derived from the Higashitani-Pritchard (HP) theory. The agreement between the two is found to be satisfactory for creeping flow in the low De range for which the Higashitani-Pritchard theory is valid. The Deborah number up to 4.0 for convergence of the algorithm has been obtained. Furthermore, the effects of fluid elasticity, inertial, and slot geometry on the hole-pressure are presented and discussed.

Original languageEnglish
Pages (from-to)67-74
Number of pages8
JournalJournal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao
Volume20
Issue number1
Publication statusPublished - 1999

Fingerprint

Finite element method
Fluids
Liquids
Elasticity
Geometry
Computer simulation

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{69653bd0513d45ab9bf7cb90e5153c91,
title = "Finite element analysis of a polymeric liquid passing over a transverse slot",
abstract = "The phenomenon of hole pressure occurs whenever a polymeric or viscoelastic liquid flows over a depression in a conduit wall. Numerical simulation of the upper-convected Maxwell fluid passing over a transverse slot is considered herein. This fluid is a typical model for the non-Newtonian behavior of some polymeric liquid. Results are computed by an elastic-viscous split stress finite element method, a mixed finite element method, incorporating the non-consistent streamline upwind scheme. As a verification of the numerical scheme, the hole-pressure is evaluated for various Deborah number (De), and is compared with the analytical prediction derived from the Higashitani-Pritchard (HP) theory. The agreement between the two is found to be satisfactory for creeping flow in the low De range for which the Higashitani-Pritchard theory is valid. The Deborah number up to 4.0 for convergence of the algorithm has been obtained. Furthermore, the effects of fluid elasticity, inertial, and slot geometry on the hole-pressure are presented and discussed.",
author = "Gien-Huang Wu and Shen-Haw Ju",
year = "1999",
language = "English",
volume = "20",
pages = "67--74",
journal = "Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao",
issn = "0257-9731",
publisher = "Chinese Mechanical Engineering Society",
number = "1",

}

TY - JOUR

T1 - Finite element analysis of a polymeric liquid passing over a transverse slot

AU - Wu, Gien-Huang

AU - Ju, Shen-Haw

PY - 1999

Y1 - 1999

N2 - The phenomenon of hole pressure occurs whenever a polymeric or viscoelastic liquid flows over a depression in a conduit wall. Numerical simulation of the upper-convected Maxwell fluid passing over a transverse slot is considered herein. This fluid is a typical model for the non-Newtonian behavior of some polymeric liquid. Results are computed by an elastic-viscous split stress finite element method, a mixed finite element method, incorporating the non-consistent streamline upwind scheme. As a verification of the numerical scheme, the hole-pressure is evaluated for various Deborah number (De), and is compared with the analytical prediction derived from the Higashitani-Pritchard (HP) theory. The agreement between the two is found to be satisfactory for creeping flow in the low De range for which the Higashitani-Pritchard theory is valid. The Deborah number up to 4.0 for convergence of the algorithm has been obtained. Furthermore, the effects of fluid elasticity, inertial, and slot geometry on the hole-pressure are presented and discussed.

AB - The phenomenon of hole pressure occurs whenever a polymeric or viscoelastic liquid flows over a depression in a conduit wall. Numerical simulation of the upper-convected Maxwell fluid passing over a transverse slot is considered herein. This fluid is a typical model for the non-Newtonian behavior of some polymeric liquid. Results are computed by an elastic-viscous split stress finite element method, a mixed finite element method, incorporating the non-consistent streamline upwind scheme. As a verification of the numerical scheme, the hole-pressure is evaluated for various Deborah number (De), and is compared with the analytical prediction derived from the Higashitani-Pritchard (HP) theory. The agreement between the two is found to be satisfactory for creeping flow in the low De range for which the Higashitani-Pritchard theory is valid. The Deborah number up to 4.0 for convergence of the algorithm has been obtained. Furthermore, the effects of fluid elasticity, inertial, and slot geometry on the hole-pressure are presented and discussed.

UR - http://www.scopus.com/inward/record.url?scp=0032623936&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032623936&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032623936

VL - 20

SP - 67

EP - 74

JO - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

JF - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

SN - 0257-9731

IS - 1

ER -