First-order derivative matrix of a ray: A simple and flexible alternative computation method

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The present group previously proposed a method for determining the first-order derivative matrix (i.e., the Jacobian matrix) of a skew ray by taking all the independent variables of the optical system as the system variable vector, X¯ sys. However, many trigonometric function calls, divisions, multiplications and additions were required to determine the ray Jacobian matrix with respect to X¯ sys. Accordingly, in the present study, the angular variables in the system variable vector, X¯ sys, are replaced with their respective cosine and sine trigonometric functions. The boundary variable vector, X¯ i, is similarly redefined such that it includes no angular variables. The proposed method has three main advantages over that previously reported: 1) it is valid for any pose matrix, irrespective of the order in which the rotation and translation motions of a boundary are assigned; 2) it involves only polynomial differentiation, and is thus easily implemented in computer code; and 3) the computation speed of ∂X¯ i ∂X¯ sys is improved by a factor of approximately ten times.

Original languageEnglish
Pages (from-to)35402-35417
Number of pages16
JournalOptics Express
Issue number24
Publication statusPublished - 2019 Nov 25

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'First-order derivative matrix of a ray: A simple and flexible alternative computation method'. Together they form a unique fingerprint.

Cite this