TY - JOUR
T1 - Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry
AU - Chen, Shu Hui
AU - Hsu, Jue Liang
AU - Lin, Fong Sian
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2008/7/1
Y1 - 2008/7/1
N2 - Fluorescence-based tagging in proteomics is useful in tracking and quantifying target proteins during sample preparation or chromatographic processes. In this study, we report a novel cysteinyl tagging method using a popular fluorophore, fluorescein derivative. Such visible dyes were shown to have multiple unique characteristics, including a unique reporter ion containing the dye moiety caused by collision-induced dissociation (CID) and high affinity toward multicarboxylate functional groups, which could be useful for enhanced selectivity in MS-based proteomics. We used sulfhydryl-reactive 5-iodoacetamidofluorescein to target cysteinyl residues on the intact protein of ovalbumin and bovine serum albumin as well as proteins in MCF-7 cells. After trypsin digestion, the digests were analyzed by nanoLC-ESI-Q-TOF or MALDI-TOF. The resulting MS spectra of tryptic fragments were similar to those of unlabeled or iodoacetamide-derivatized proteins, and the MS/MS fragmentation of all fluorescein-tagged peptides was readily interpretable with intact label. Thus, fluorescein-derivatized proteins can be identified by automatic mass mapping or peptide sequencing with high confidence. It is notable that, in MS/MS mode, a strong reporter ion (m/z 422) containing the fluorescein moiety was readily detected and was believed to derive from the immonium fragment of fluorescein-labeled cysteine residues, f C (m/z 463), under CID conditions. Using a precursor scan of the reporter ion, a cysteinyl protein, ovomucoid, was identified to be present in the ovalbumin sample as an impurity. The fluorescein derivatives were further shown to have high affinities toward metal-chelating materials that have iminodiacetic acid functional groups either with or without the presence of bound metal ions. When coupling with stable isotope dimethyl labeling, fluorescein-tagged peptides could be selectively enriched, identified, and quantified. In view of its popularity, visible tracking, and unique characteristics for developing selective methods, fluorescein tagging holds great promises for targeting proteomics.
AB - Fluorescence-based tagging in proteomics is useful in tracking and quantifying target proteins during sample preparation or chromatographic processes. In this study, we report a novel cysteinyl tagging method using a popular fluorophore, fluorescein derivative. Such visible dyes were shown to have multiple unique characteristics, including a unique reporter ion containing the dye moiety caused by collision-induced dissociation (CID) and high affinity toward multicarboxylate functional groups, which could be useful for enhanced selectivity in MS-based proteomics. We used sulfhydryl-reactive 5-iodoacetamidofluorescein to target cysteinyl residues on the intact protein of ovalbumin and bovine serum albumin as well as proteins in MCF-7 cells. After trypsin digestion, the digests were analyzed by nanoLC-ESI-Q-TOF or MALDI-TOF. The resulting MS spectra of tryptic fragments were similar to those of unlabeled or iodoacetamide-derivatized proteins, and the MS/MS fragmentation of all fluorescein-tagged peptides was readily interpretable with intact label. Thus, fluorescein-derivatized proteins can be identified by automatic mass mapping or peptide sequencing with high confidence. It is notable that, in MS/MS mode, a strong reporter ion (m/z 422) containing the fluorescein moiety was readily detected and was believed to derive from the immonium fragment of fluorescein-labeled cysteine residues, f C (m/z 463), under CID conditions. Using a precursor scan of the reporter ion, a cysteinyl protein, ovomucoid, was identified to be present in the ovalbumin sample as an impurity. The fluorescein derivatives were further shown to have high affinities toward metal-chelating materials that have iminodiacetic acid functional groups either with or without the presence of bound metal ions. When coupling with stable isotope dimethyl labeling, fluorescein-tagged peptides could be selectively enriched, identified, and quantified. In view of its popularity, visible tracking, and unique characteristics for developing selective methods, fluorescein tagging holds great promises for targeting proteomics.
UR - http://www.scopus.com/inward/record.url?scp=46849097139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=46849097139&partnerID=8YFLogxK
U2 - 10.1021/ac800436j
DO - 10.1021/ac800436j
M3 - Article
C2 - 18512949
AN - SCOPUS:46849097139
SN - 0003-2700
VL - 80
SP - 5251
EP - 5259
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 13
ER -