Fluoride network and circular economy as potential model for sustainable development-A review

Carl Francis Z. Lacson, Ming Chun Lu, Yao Hui Huang

Research output: Contribution to journalReview articlepeer-review

37 Citations (Scopus)

Abstract

Fluorine is the most reactive elements among the halogen group and commonly and ubiquitously occurs as fluoride in nature. The industrial processes produce fluoride by-products causing the increase of unwanted environmental levels and consequently posing risk on human and environmental health worldwide. This review gives a fundamental understanding of fluoride networks in the industrial processes, in the geological and hydrological transport, and in the biological sphere. Numerous biological pathways of fluoride also increase the risk of exposure. Literature shows that various environmental levels of fluoride due to its chemical characteristics cause bioaccumulation resulting in health deterioration among organisms. These problems are aggravated by emitted fluoride in the air and wastewater streams. Moreover, the current waste disposal dependent on incineration and landfilling superpose to the problem. In our analysis, the fluoride material flow model still follows a linear economy and reuse economy to some extent. This flow model spoils resources with high economic potential and worsens environmental problems. Thus, we intend a shift from the conventional linear economy to a circular economy with the revival of three-dimensional objectives of sustainable development. Linkages between key dimensions of the circular economy to stimulate momentum for perpetual sustainable development are proposed to gain economic, environmental and social benefits.

Original languageEnglish
Article number124662
JournalChemosphere
Volume239
DOIs
Publication statusPublished - 2020 Jan

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Public Health, Environmental and Occupational Health
  • Pollution
  • Health, Toxicology and Mutagenesis
  • Environmental Engineering
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Fluoride network and circular economy as potential model for sustainable development-A review'. Together they form a unique fingerprint.

Cite this