TY - JOUR
T1 - Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments
AU - Chen, Wel Hsin
AU - Du, Shan Wen
AU - Yang, Hsi Hsien
AU - Wu, Jheng Syun
PY - 2008/5
Y1 - 2008/5
N2 - The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400°C are considered. Experimental observations indicate that when the reaction temperature is 1000°C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400°C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000°C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400°C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000°C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400°C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.
AB - The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400°C are considered. Experimental observations indicate that when the reaction temperature is 1000°C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400°C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000°C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400°C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000°C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400°C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.
UR - http://www.scopus.com/inward/record.url?scp=43949136437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43949136437&partnerID=8YFLogxK
U2 - 10.3155/1047-3289.58.5.702
DO - 10.3155/1047-3289.58.5.702
M3 - Article
C2 - 18512447
AN - SCOPUS:43949136437
VL - 58
SP - 702
EP - 710
JO - Journal of the Air and Waste Management Association
JF - Journal of the Air and Waste Management Association
SN - 1096-2247
IS - 5
ER -