Four-component pharmacophore model for endomorphins toward μ opioid receptor subtypes

Yng Ching Wu, Tim Jaglinski, Jin Yuan Hsieh, Jia Jyun Chiu, Tzen Yuh Chiang, Chi Chuan Hwang

Research output: Contribution to journalArticle

3 Citations (Scopus)


In the present work, a series of simulation tools were used to determine structure-activity relationships for the endomorphins (EMs) and derive μ-pharmacophore models for these peptides. Potential lowest energy conformations were determined in vacuo by systematically varying the torsional angles of the Tyr 1-Pro 21) and Pro 2- Trp 3/Phe 32) as tuning parameters in AM1 calculations. These initial models were then exposed to aqueous conditions via molecular dynamics simulations. In aqueous solution, the simulations suggest that endomorphin conformers strongly favor the trans/trans pair of the ω 12 amide bonds. From two-dimensional probability distributions of the ring-to-ring distances with respect to the pharmacophoric angles for EMs, a selectivity range of μ 1 is ca. 8.3~10.5 Å for endomorphin-2 and selectivity range of μ 2 is ca. 10.5~13.0 Å for endomorphin-1 were determined. Four-component μ-pharmacophore models are proposed for EMs and are compared to the previously published δ- and κ-pharmacophore models.

Original languageEnglish
Pages (from-to)825-834
Number of pages10
JournalJournal of Molecular Modeling
Issue number2
Publication statusPublished - 2012 Feb 1

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Computational Theory and Mathematics
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Four-component pharmacophore model for endomorphins toward μ opioid receptor subtypes'. Together they form a unique fingerprint.

  • Cite this