Fuzzy clustering of gait patterns of patients after ankle arthrodesis based on kinematic parameters

Fong Chin Su, Wen Lan Wu, Yuh Min Cheng, You Li Chou

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Kinematic parameters for 10 normal subjects and 10 patients with ankle arthrodesis are grouped using the fuzzy cluster paradigm. The features chosen for clustering are Euler angles of the sagittal plane in the hindfoot, the forefoot and combined hindfoot and forefoot joints. Gait patterns are identified using information provided by cluster validity techniques, giving three, three and two clusters for the hindfoot, forefoot and combined hindfoot and forefoot joints, respectively. The cluster centers represent distinct walking strategies adopted by normal subjects and patients after ankle arthrodesis. Utilizing angle values normalized by gait cycle, it is possible to classify any subject and to generate an individual's membership value for each of the clusters. The clinical utility of the fuzzy clustering approach is demonstrated with data for subjects with ankle arthrodesis, where changes in membership of the clusters provide an objective technique for measuring changes of gait pattern after ankle arthrodesis. This approach can be adopted to study other clinical entities where different cluster centers would be established using the algorithm provided in this study.

Original languageEnglish
Pages (from-to)83-90
Number of pages8
JournalMedical Engineering and Physics
Volume23
Issue number2
DOIs
Publication statusPublished - 2001

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Fuzzy clustering of gait patterns of patients after ankle arthrodesis based on kinematic parameters'. Together they form a unique fingerprint.

Cite this