Gap estimates of Schrödinger operator

Research output: Contribution to journalArticle

Abstract

By a transformation of metric using the first eigenfunction, we obtain lower bounds for all eigenvalues of Schrödinger operator with the Neumann boundary condition. Global estimates for first eigenfunction are needed and this is achieved by the Moser iteration technique.

Original languageEnglish
Pages (from-to)225-240
Number of pages16
JournalPacific Journal of Mathematics
Volume178
Issue number2
DOIs
Publication statusPublished - 1997 Apr

Fingerprint

Eigenfunctions
Moser Iteration
Operator
Neumann Boundary Conditions
Estimate
Lower bound
Eigenvalue
Metric

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{5c21cc1fcb2f42ce81e9796aca5cec7b,
title = "Gap estimates of Schr{\"o}dinger operator",
abstract = "By a transformation of metric using the first eigenfunction, we obtain lower bounds for all eigenvalues of Schr{\"o}dinger operator with the Neumann boundary condition. Global estimates for first eigenfunction are needed and this is achieved by the Moser iteration technique.",
author = "Roger Chen",
year = "1997",
month = "4",
doi = "10.2140/pjm.1997.178.225",
language = "English",
volume = "178",
pages = "225--240",
journal = "Pacific Journal of Mathematics",
issn = "0030-8730",
publisher = "University of California, Berkeley",
number = "2",

}

Gap estimates of Schrödinger operator. / Chen, Roger.

In: Pacific Journal of Mathematics, Vol. 178, No. 2, 04.1997, p. 225-240.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Gap estimates of Schrödinger operator

AU - Chen, Roger

PY - 1997/4

Y1 - 1997/4

N2 - By a transformation of metric using the first eigenfunction, we obtain lower bounds for all eigenvalues of Schrödinger operator with the Neumann boundary condition. Global estimates for first eigenfunction are needed and this is achieved by the Moser iteration technique.

AB - By a transformation of metric using the first eigenfunction, we obtain lower bounds for all eigenvalues of Schrödinger operator with the Neumann boundary condition. Global estimates for first eigenfunction are needed and this is achieved by the Moser iteration technique.

UR - http://www.scopus.com/inward/record.url?scp=0039379552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039379552&partnerID=8YFLogxK

U2 - 10.2140/pjm.1997.178.225

DO - 10.2140/pjm.1997.178.225

M3 - Article

AN - SCOPUS:0039379552

VL - 178

SP - 225

EP - 240

JO - Pacific Journal of Mathematics

JF - Pacific Journal of Mathematics

SN - 0030-8730

IS - 2

ER -