TY - GEN
T1 - General relativity without paradigm of space-time covariance
T2 - 1st Leung Center for Cosmology and Particle Astrophysics Symposium, LeCosPA 2012
AU - Soo, Chopin
AU - Yu, Hoi Lai
N1 - Publisher Copyright:
© 2013 by World Scientific Publishing Co. Pte. Ltd.
PY - 2013
Y1 - 2013
N2 - Covariance of space and time in General Relativity (GR) entails a number of technical and conceptual difficulties. Remarkably, these can be resolved by a paradigm shift from full 4-dimensional general coordinate invariance to invariance only with respect to spatial diffeomorphisms. The framework for a theory of gravity with this paradigm shift, from quantum to classical regimes, is presented; GR is contained as a special case. Appositely formulated as a master constraint, the Hamiltonian constraint now determines only dynamics; and is relieved of its dual role of generating symmetry transformations. The Dirac algebra, in which 4-dimensional diffeomorphism symmetry is only realized on-shell, is replaced by the master constraint algebra which possesses only spatial diffeomorphism gauge symmetry, both on- and off-shell. Decomposition of the spatial metric into unimodular and determinant, q, factors results in mutually commuting pairs of canonical variables. The classical content of GR can be captured with a Hamiltonian constraint linear in the trace of the momentum. This implies a theory of quantum gravity can be described by a Schrodinger equation first order in intrinsic time ln q accompanied with positive semi-definite probability density. The semi-classical Hamilton-Jacobi equation is also first order in intrinsic time, with the implication of being complete; and gauge- invariant physical observables can be constructed from integration constants of its complete integral solution. Classical space-time, with direct correlation of its proper times and intrinsic time intervals, emerges from constructive interference; and the physical con- tent of GR can be regained from a theory with a true Hamiltonian generating intrinsic time translations, but with only spatial diffeomorphism symmetry. The framework also prompts natural extensions towards a well-behaved quantum theory of gravity.
AB - Covariance of space and time in General Relativity (GR) entails a number of technical and conceptual difficulties. Remarkably, these can be resolved by a paradigm shift from full 4-dimensional general coordinate invariance to invariance only with respect to spatial diffeomorphisms. The framework for a theory of gravity with this paradigm shift, from quantum to classical regimes, is presented; GR is contained as a special case. Appositely formulated as a master constraint, the Hamiltonian constraint now determines only dynamics; and is relieved of its dual role of generating symmetry transformations. The Dirac algebra, in which 4-dimensional diffeomorphism symmetry is only realized on-shell, is replaced by the master constraint algebra which possesses only spatial diffeomorphism gauge symmetry, both on- and off-shell. Decomposition of the spatial metric into unimodular and determinant, q, factors results in mutually commuting pairs of canonical variables. The classical content of GR can be captured with a Hamiltonian constraint linear in the trace of the momentum. This implies a theory of quantum gravity can be described by a Schrodinger equation first order in intrinsic time ln q accompanied with positive semi-definite probability density. The semi-classical Hamilton-Jacobi equation is also first order in intrinsic time, with the implication of being complete; and gauge- invariant physical observables can be constructed from integration constants of its complete integral solution. Classical space-time, with direct correlation of its proper times and intrinsic time intervals, emerges from constructive interference; and the physical con- tent of GR can be regained from a theory with a true Hamiltonian generating intrinsic time translations, but with only spatial diffeomorphism symmetry. The framework also prompts natural extensions towards a well-behaved quantum theory of gravity.
UR - http://www.scopus.com/inward/record.url?scp=85032569018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032569018&partnerID=8YFLogxK
U2 - 10.1142/9789814449373_0006
DO - 10.1142/9789814449373_0006
M3 - Conference contribution
AN - SCOPUS:85032569018
T3 - 1st LeCosPA Symposium: Towards Ultimate Understanding of the Universe, LeCosPA 2012
SP - 76
EP - 87
BT - 1st LeCosPA Symposium
A2 - Chen, Pisin
PB - World Scientific Publishing Co. Pte Ltd
Y2 - 6 February 2012 through 9 February 2012
ER -