Abstract
Dental cone-beam computed tomography (CBCT) is a powerful tool in clinical treatment planning, especially in a digital dentistry platform. Currently, the “as low as diagnostically acceptable” (ALADA) principle and diagnostic ability are a trade-off in most of the 3D integrated applications, especially in the low radio-opaque densified tissue structure. The CBCT benefits in comprehensive diagnosis and its treatment prognosis for post-operation predictability are clinically known in modern dentistry. In this paper, we propose a new algorithm called the selective anatomy analytic iteration reconstruction (SA2IR) algorithm for the sparse-projection set. The algorithm was simulated on a phantom structure analogous to a patient’s head for geometric similarity. The proposed algorithm is projection-based. Interpolated set enrichment and trio-subset enhancement were used to reduce the generative noise and maintain the scan’s clinical diagnostic ability. The results show that proposed method was highly applicable in medico-dental imaging diagnostics fusion for the computer-aided treatment planning, because it had significant generative noise reduction and lowered computational cost when compared to the other common contemporary algorithms for sparse projection, which generate a low-dosed CBCT reconstruction.
Original language | English |
---|---|
Article number | 1381 |
Journal | Electronics (Switzerland) |
Volume | 8 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2019 Dec |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Signal Processing
- Hardware and Architecture
- Computer Networks and Communications
- Electrical and Electronic Engineering