Geometric and Electronic Properties of Monolayer HfX2 (X = S, Se, or Te): A First-Principles Calculation

Thi My Duyen Huynh, Duy Khanh Nguyen, Thi Dieu Hien Nguyen, Vo Khuong Dien, Hai Duong Pham, Ming Fa Lin

Research output: Contribution to journalArticlepeer-review

Abstract

The essential properties of monolayer HfX2 (X = S, Se, or Te) are fully explored by first-principles calculations. The optimal lattice symmetries, sublattice buckling, electronic energy spectra, and density of states are systematically investigated. Monolayer HfS2, HfSe2, and HfTe2, respectively, belong to middle-gap semiconductor, narrow-gap one and semimetal, with various energy dispersions. Moreover, the van Hove singularities (vHs) mainly arise from the band-edge states, and their special structures in the density of states strongly depend on their two or three-dimensional structures and the critical points in the energy-wave-vector space. The above-mentioned theoretical predictions are attributed to the multi-orbital hybridizations of [(Formula presented.), dxy, dyz, dzx, (Formula presented.)]–[s, px, py, pz] in the Hf-X chemical bonds. The diversified physical phenomena clearly indicate a high potential for applications, as observed in MoS2-related emergent materials ions.

Original languageEnglish
Article number569756
JournalFrontiers in Materials
Volume7
DOIs
Publication statusPublished - 2021 Mar 1

All Science Journal Classification (ASJC) codes

  • Materials Science (miscellaneous)

Fingerprint

Dive into the research topics of 'Geometric and Electronic Properties of Monolayer HfX<sub>2</sub> (X = S, Se, or Te): A First-Principles Calculation'. Together they form a unique fingerprint.

Cite this