Graph Neural Networks for Tabular Data Learning

Cheng Te Li, Yu Che Tsai, Jay Chiehen Liao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Deep learning-based approaches to Tabular Data Learning (TDL) have shown promising performance compared to their conventional counterparts. However, these methods often fail to account for the latent correlation among data instances and feature values. Recently, graph neural networks (GNNs) have gained attention across various application domains, including TDL, for their ability to model relations and interactions between different data entities. By creating appropriate graph structures from the input tabular data and employing GNNs for learning, the performance of TDL can be improved significantly. In this tutorial, we systematically introduce the methodologies of designing and applying GNNs to TDL. Our discussion covers the foundations and overview of GNN-based TDL methods, with a focus on formulating TDL as different graph structures. We also provide a comprehensive taxonomy of constructing graph structures and representation learning in GNN-based TDL methods. We describe the TDL model training framework, which includes different auxiliary tasks and supports open-world learning. Additionally, we discuss how to apply GNNs to various TDL application scenarios and tasks. Finally, we outline the limitations of current research and future directions for this field.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
PublisherIEEE Computer Society
Pages3589-3592
Number of pages4
ISBN (Electronic)9798350322279
DOIs
Publication statusPublished - 2023
Event39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, United States
Duration: 2023 Apr 32023 Apr 7

Publication series

NameProceedings - International Conference on Data Engineering
Volume2023-April
ISSN (Print)1084-4627

Conference

Conference39th IEEE International Conference on Data Engineering, ICDE 2023
Country/TerritoryUnited States
CityAnaheim
Period23-04-0323-04-07

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Information Systems

Fingerprint

Dive into the research topics of 'Graph Neural Networks for Tabular Data Learning'. Together they form a unique fingerprint.

Cite this