TY - JOUR
T1 - Graphene Oxide Sponge as Nanofillers in Printable Electrolytes in High-Performance Quasi-Solid-State Dye-Sensitized Solar Cells
AU - Venkatesan, Shanmuganathan
AU - Surya Darlim, Elmer
AU - Tsai, Ming Hsiang
AU - Teng, Hsisheng
AU - Lee, Yuh Lang
PY - 2018/4/4
Y1 - 2018/4/4
N2 - A graphene oxide sponge (GOS) is utilized for the first time as a nanofiller (NF) in printable electrolytes (PEs) based on poly(ethylene oxide) and poly(vinylidene fluoride) for quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The effects of the various concentrations of GOS NFs on the ion diffusivity and conductivity of electrolytes and the performance of the QS-DSSCs are studied. The results show that the presence of GOS NFs significantly increases the diffusivity and conductivity of the PEs. The introduction of 1.5 wt % of GOS NFs decreases the charge-transfer resistance at the Pt-counter electrode/electrolyte interface (Rpt) and increases the recombination resistance at the photoelectrode/electrolyte interface (Rct). QS-DSSC utilizing 1.5 wt % GOS NFs can achieve an energy conversion efficiency (8.78%) higher than that found for their liquid counterpart and other reported polymer gel electrolytes/GO NFs based DSSCs. The high energy conversion efficiency is a consequence of the increase in both the open-circuit potential (Voc) and fill factor with a slight decrease in current density (Jsc). The cell efficiency can retain 86% of its initial value after a 500 h stability test at 60 °C under dark conditions. The long-term stability of the QS-DSSC with GOS NFs is higher than that without NFs. This result indicates that the GOS NFs do not cause dye-desorption from the photoanode in a long-term stability test, which infers a superior performance of GOS NFs as compared to TiO2 NFs in terms of increasing the efficiency and long-term stability of QS-DSSCs.
AB - A graphene oxide sponge (GOS) is utilized for the first time as a nanofiller (NF) in printable electrolytes (PEs) based on poly(ethylene oxide) and poly(vinylidene fluoride) for quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The effects of the various concentrations of GOS NFs on the ion diffusivity and conductivity of electrolytes and the performance of the QS-DSSCs are studied. The results show that the presence of GOS NFs significantly increases the diffusivity and conductivity of the PEs. The introduction of 1.5 wt % of GOS NFs decreases the charge-transfer resistance at the Pt-counter electrode/electrolyte interface (Rpt) and increases the recombination resistance at the photoelectrode/electrolyte interface (Rct). QS-DSSC utilizing 1.5 wt % GOS NFs can achieve an energy conversion efficiency (8.78%) higher than that found for their liquid counterpart and other reported polymer gel electrolytes/GO NFs based DSSCs. The high energy conversion efficiency is a consequence of the increase in both the open-circuit potential (Voc) and fill factor with a slight decrease in current density (Jsc). The cell efficiency can retain 86% of its initial value after a 500 h stability test at 60 °C under dark conditions. The long-term stability of the QS-DSSC with GOS NFs is higher than that without NFs. This result indicates that the GOS NFs do not cause dye-desorption from the photoanode in a long-term stability test, which infers a superior performance of GOS NFs as compared to TiO2 NFs in terms of increasing the efficiency and long-term stability of QS-DSSCs.
UR - http://www.scopus.com/inward/record.url?scp=85044919750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044919750&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b01098
DO - 10.1021/acsami.8b01098
M3 - Article
C2 - 29517224
AN - SCOPUS:85044919750
SN - 1944-8244
VL - 10
SP - 10955
EP - 10964
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 13
ER -