TY - JOUR
T1 - Gut dysbiosis during covid-19 and potential effect of probiotics
AU - Hung, Yuan Pin
AU - Lee, Ching Chi
AU - Lee, Jen Chieh
AU - Tsai, Pei Jane
AU - Ko, Wen Chien
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8
Y1 - 2021/8
N2 - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus of the family Coronaviridae, causes coronavirus disease 2019 (COVID-19), an influenza-like disease that chiefly infects the lungs through respiratory transmission. The spike protein of SARS-CoV-2, a transmembrane protein in its outer portion, targets angiotensin-converting enzyme 2 (ACE2) as the binding receptor for the cell entry. As ACE2 is highly expressed in the gut and pulmonary tissues, SARS-CoV-2 infections frequently result in gastrointestinal inflammation, with presentations ordinarily ranging from intestinal cramps to complications with intestinal perforations. However, the evidence detailing successful therapy for gastrointestinal involvement in COVID-19 patients is currently limited. A significant change in fecal microbiomes, namely dysbiosis, was characterized by the enrichment of opportunistic pathogens and the depletion of beneficial commensals and their crucial association to COVID-19 severity has been evidenced. Oral probiotics had been evidenced to improve gut health in achieving homeostasis by exhibiting their antiviral effects via the gut–lung axis. Although numerous commercial probiotics have been effective against coronavirus, their efficacies in treating COVID-19 patients remain debated. In ClinicalTrials.gov, 19 clinical trials regarding the dietary supplement of probiotics, in terms of Lactobacillus and mixtures of Bifidobacteria and Lactobacillus, for treating COVID-19 cases are ongoing. Accordingly, the preventive or therapeutic role of probiotics for COVID-19 patients can be elucidated in the near future.
AB - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus of the family Coronaviridae, causes coronavirus disease 2019 (COVID-19), an influenza-like disease that chiefly infects the lungs through respiratory transmission. The spike protein of SARS-CoV-2, a transmembrane protein in its outer portion, targets angiotensin-converting enzyme 2 (ACE2) as the binding receptor for the cell entry. As ACE2 is highly expressed in the gut and pulmonary tissues, SARS-CoV-2 infections frequently result in gastrointestinal inflammation, with presentations ordinarily ranging from intestinal cramps to complications with intestinal perforations. However, the evidence detailing successful therapy for gastrointestinal involvement in COVID-19 patients is currently limited. A significant change in fecal microbiomes, namely dysbiosis, was characterized by the enrichment of opportunistic pathogens and the depletion of beneficial commensals and their crucial association to COVID-19 severity has been evidenced. Oral probiotics had been evidenced to improve gut health in achieving homeostasis by exhibiting their antiviral effects via the gut–lung axis. Although numerous commercial probiotics have been effective against coronavirus, their efficacies in treating COVID-19 patients remain debated. In ClinicalTrials.gov, 19 clinical trials regarding the dietary supplement of probiotics, in terms of Lactobacillus and mixtures of Bifidobacteria and Lactobacillus, for treating COVID-19 cases are ongoing. Accordingly, the preventive or therapeutic role of probiotics for COVID-19 patients can be elucidated in the near future.
UR - http://www.scopus.com/inward/record.url?scp=85111311157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111311157&partnerID=8YFLogxK
U2 - 10.3390/microorganisms9081605
DO - 10.3390/microorganisms9081605
M3 - Review article
AN - SCOPUS:85111311157
SN - 2076-2607
VL - 9
JO - Microorganisms
JF - Microorganisms
IS - 8
M1 - 1605
ER -