Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure

V. L. Trinh, C. K. Chung

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

The triboelectric generators (TEG) or triboelectric nanogenerators (TENG) are effective devices converting the wasted mechanical energy into electrical one that can be used powerfully in light emission and energy storage for various low-power electronic applications. The TEG/TENG's output performance strongly depends on the surface morphology of the contact tribo-materials. Here, we investigate the morphology effect on the output performance of a novel polydimethylsiloxane (PDMS) based TEG with Inclined Wall Arrays and Micro-Topping (IWA-MT) structure concerning mechanical–electrical energy converted electricity, storage, and lighting. The special novel shape of the IWA-MT-PDMS in the contact-separating mode with aluminum (Al) caused the increased contact area and friction of the two tribo-surfaces for enhancing the power and performance of TEG device. The sustainable IWA-MT TEG was fabricated using a green, low-cost, flexible CO2 laser-ablation on the polymethyl methacrylate mold and a polymer casting process. Two IWA-MT types were designed to study the power enhancement and mechanical–electrical energy conversion of TEG including an Inclined Wall Arrays with Micro-Particle topping (IWA-MP) and with Splayed Micro-Dome topping (IWA-SMD). In comparison, the IWA-MP-PDMS-TEG significantly exceeds the IWA-SMD-PDMS-TEG with a maximum open-circuit voltage of 135.8 V, a short-circuit current of 109.5 μA, a current density of 3.5 μA cm−2, a maximum power of 29.7 mW corresponding to a power density of 9.6 W m−2. The energy storage ability of IWA-MP-PDMS-TEG is characterized by a charged voltage of 1.74 V at 0.76 s into a 0.22 μF capacitorand, and stable charging with thousands of times into a 0.1 µF capacitor. The IWA-MP-PDMS-TEG can directly light on 83 colored LEDs wired in series, and power to the advertising boards.

Original languageEnglish
Pages (from-to)353-365
Number of pages13
JournalApplied Energy
Volume213
DOIs
Publication statusPublished - 2018 Mar 1

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure'. Together they form a unique fingerprint.

  • Cite this