TY - JOUR
T1 - Health risks for human intake of aquacultural fish
T2 - Arsenic bioaccumulation and contamination
AU - Kar, Sandeep
AU - Maity, Jyoti Prakash
AU - Jean, Jiin Shuh
AU - Liu, Chia Chuan
AU - Liu, Chen Wuing
AU - Bundschuh, Jochen
AU - Lu, Hsueh Yu
PY - 2011/9/1
Y1 - 2011/9/1
N2 - Aquacultural tilapia (Oreochromis mossambicus L.) and shrimp (Penaeus monodon L.) from groundwater-cultured ponds in southwestern Taiwan were analyzed to estimate arsenic (As) bioaccumulation and the potential health risk to human intake. Most of aquacultural ponds exhibited higher arsenic than maximum allowed concentrations (50 μg L -1) in pond water of Taiwan. Arsenic levels in tilapia in Budai, Yichu and Beimen were 0.92±0.52 μg g -1, 0.93±0.19 μg g -1 and 0.76±0.03 μg g -1, respectively and in shrimp was 0.36±0.01 μg g -1 in Beimen. Total arsenic in tilapia is highly correlated (R 2 = 0.80) with total arsenic concentration of pond water. Total arsenic in fish showed high correlation with that in bone (R 2 = 0.98), head (R 2 = 0.97) and tissue (R 2 = 0.96). Organic arsenic species (DMA) was found higher relative to inorganic species of As(III) and As(V). The average percent contribution of inorganic arsenic to total arsenic in fish samples was 12.5% and ranged between 11.7 to 14.2%. Bioaccumulation factors (BAFs) for total arsenic in fish ranged from 10.3 to 22.1, whereas BAF for inorganic arsenic ranged from 1.33 to 2.82. The mean human health cancer risk associated with the ingestion of inorganic arsenic in the fish was estimated at 2.36×10 -4±0.99×10 -4, which is over 200 times greater than a de Minimus cancer risk of 1×10 -6. The mean human health hazard quotient associated with ingesting inorganic arsenic in the fish was 1.22±0.52, indicating that expected human exposure exceeds the reference dose for non-cancer health effects by 22%. These results suggest that the inhabitants in this region are being subjected to moderately elevated arsenic exposure through the consumption of tilapia and shrimp raised in aquaculture ponds.
AB - Aquacultural tilapia (Oreochromis mossambicus L.) and shrimp (Penaeus monodon L.) from groundwater-cultured ponds in southwestern Taiwan were analyzed to estimate arsenic (As) bioaccumulation and the potential health risk to human intake. Most of aquacultural ponds exhibited higher arsenic than maximum allowed concentrations (50 μg L -1) in pond water of Taiwan. Arsenic levels in tilapia in Budai, Yichu and Beimen were 0.92±0.52 μg g -1, 0.93±0.19 μg g -1 and 0.76±0.03 μg g -1, respectively and in shrimp was 0.36±0.01 μg g -1 in Beimen. Total arsenic in tilapia is highly correlated (R 2 = 0.80) with total arsenic concentration of pond water. Total arsenic in fish showed high correlation with that in bone (R 2 = 0.98), head (R 2 = 0.97) and tissue (R 2 = 0.96). Organic arsenic species (DMA) was found higher relative to inorganic species of As(III) and As(V). The average percent contribution of inorganic arsenic to total arsenic in fish samples was 12.5% and ranged between 11.7 to 14.2%. Bioaccumulation factors (BAFs) for total arsenic in fish ranged from 10.3 to 22.1, whereas BAF for inorganic arsenic ranged from 1.33 to 2.82. The mean human health cancer risk associated with the ingestion of inorganic arsenic in the fish was estimated at 2.36×10 -4±0.99×10 -4, which is over 200 times greater than a de Minimus cancer risk of 1×10 -6. The mean human health hazard quotient associated with ingesting inorganic arsenic in the fish was 1.22±0.52, indicating that expected human exposure exceeds the reference dose for non-cancer health effects by 22%. These results suggest that the inhabitants in this region are being subjected to moderately elevated arsenic exposure through the consumption of tilapia and shrimp raised in aquaculture ponds.
UR - http://www.scopus.com/inward/record.url?scp=80052485575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052485575&partnerID=8YFLogxK
U2 - 10.1080/10934529.2011.598814
DO - 10.1080/10934529.2011.598814
M3 - Article
C2 - 21879859
AN - SCOPUS:80052485575
VL - 46
SP - 1266
EP - 1273
JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
SN - 1093-4529
IS - 11
ER -