TY - JOUR
T1 - Heat transfer in rotating spiral channel with two opposite planar walls roughened by skew ribs
AU - Chang, S. W.
AU - Chiang, K. F.
AU - Kao, J. K.
N1 - Funding Information:
The work and experimental facilities were financially supported by the research grants in aid of AVC research project and National Science Council of NSC 99-2221-E-022-015MY3 .
PY - 2012/6
Y1 - 2012/6
N2 - Heat transfer performances in a radially rotating spiral channel with two opposite planar endwalls roughened by in-line 45°ribs at speeds of 0-900 rev/min are experimentally examined. Airflow enters this rotating channel from the spiral eye and flows spirally outward with different co- and counter rotating conditions at which the Coriolis secondary flows respectively enrich and suppress the combined vortices tripped by skew-ribs and centrifugal forces. Local Nusselt numbers along the centerlines of the inner/outer smooth curved walls and the ribbed planar endwall are individually measured at Reynolds numbers (Re) of 750-30,000, rotation numbers (Ro) of 0-3.09 and buoyancy numbers (Bu) of 0.00038-7.88 with co- and counter rotations. In the static channel, the rib-induced sectional flows enrich Dean vortices to raise the mean centerline-averaged Nusselt numbers (Nu 0,mean) to 5.79-9.84 and 3.37-2.11 times of the straight plain duct references (Nu ∞) at laminar and turbulent conditions, respectively. In the rotating channel, the rotation induced Coriolis and centrifugal forces act synergetically to generate various degrees of heat transfer impacts on the inner, outer and ribbed channel walls. A set of selected heat transfer data illustrates the differential rotational-force effects on local Nu and the averaged Nusselt numbers (Nu) along the centerlines of rotating inner, outer and ribbed walls by analyzing the interdependent and isolated Re, Ro and Bu impacts on Nu and Nu at co- and counter rotating conditions. Due to the combined Re, Ro and Bu effects, Nu/Nu 0 ratios over the inner, outer and ribbed walls with co- and counter rotations respectively fall in the ranges of 1.08-3.01, 1.03-2.6 and 1.01-2.19 at co-rotating conditions and 1.01-2.63, 2.68-1.87 and 0.74-2.13 with counter rotations. A set of physically consistent heat transfer correlations is generated to permit the evaluation of individual and interdependent Re, Ro and Bu impacts on Nu over each constituent channel wall for this rotating spiral ribbed channel.
AB - Heat transfer performances in a radially rotating spiral channel with two opposite planar endwalls roughened by in-line 45°ribs at speeds of 0-900 rev/min are experimentally examined. Airflow enters this rotating channel from the spiral eye and flows spirally outward with different co- and counter rotating conditions at which the Coriolis secondary flows respectively enrich and suppress the combined vortices tripped by skew-ribs and centrifugal forces. Local Nusselt numbers along the centerlines of the inner/outer smooth curved walls and the ribbed planar endwall are individually measured at Reynolds numbers (Re) of 750-30,000, rotation numbers (Ro) of 0-3.09 and buoyancy numbers (Bu) of 0.00038-7.88 with co- and counter rotations. In the static channel, the rib-induced sectional flows enrich Dean vortices to raise the mean centerline-averaged Nusselt numbers (Nu 0,mean) to 5.79-9.84 and 3.37-2.11 times of the straight plain duct references (Nu ∞) at laminar and turbulent conditions, respectively. In the rotating channel, the rotation induced Coriolis and centrifugal forces act synergetically to generate various degrees of heat transfer impacts on the inner, outer and ribbed channel walls. A set of selected heat transfer data illustrates the differential rotational-force effects on local Nu and the averaged Nusselt numbers (Nu) along the centerlines of rotating inner, outer and ribbed walls by analyzing the interdependent and isolated Re, Ro and Bu impacts on Nu and Nu at co- and counter rotating conditions. Due to the combined Re, Ro and Bu effects, Nu/Nu 0 ratios over the inner, outer and ribbed walls with co- and counter rotations respectively fall in the ranges of 1.08-3.01, 1.03-2.6 and 1.01-2.19 at co-rotating conditions and 1.01-2.63, 2.68-1.87 and 0.74-2.13 with counter rotations. A set of physically consistent heat transfer correlations is generated to permit the evaluation of individual and interdependent Re, Ro and Bu impacts on Nu over each constituent channel wall for this rotating spiral ribbed channel.
UR - http://www.scopus.com/inward/record.url?scp=84862820890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862820890&partnerID=8YFLogxK
U2 - 10.1016/j.ijthermalsci.2012.01.018
DO - 10.1016/j.ijthermalsci.2012.01.018
M3 - Article
AN - SCOPUS:84862820890
SN - 1290-0729
VL - 56
SP - 107
EP - 121
JO - International Journal of Thermal Sciences
JF - International Journal of Thermal Sciences
ER -