Heat transfer of rotating rectangular channel with diamond shaped pin-fin array at high rotation numbers

Shyy-Woei Chang, T. M. Liou, T. H. Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This experimental study measured the detailed Nusselt numbers (Nu) distributions over two opposite leading and trailing walls of a rotating rectangular channel fitted with diamond shaped pin-fin array with radially outward flow for gas turbine rotor blade cooling applications. The combined and isolated effects of Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers on local and area-averaged Nusselt numbers (Nu and Nu ) were examined at the test conditions of 5000<Re<15000, 0<Ro<0.6 and 0.0007<Bu<0.31. The present infrared thermography method enables the generation of full-field Nu scans over the rotating endwalls at the realistic engine Ro conditions as the first attempt to reveal the combined rotating buoyancy and Coriolis force effects on heat transfer properties. The selected heat transfer results demonstrate the Coriolis and rotating-buoyancy effects on the heat transfer performances of this rotating channel. Acting by the combined Coriolis and rotating buoyancy effects on the area-averaged heat transfer properties, the rotating leading and trailing area-averaged Nusselt numbers are modified respectively to 0.82-1.52 and 1-1.89 times of the static channel references. A set of physically consistent empirical Nu correlations was generated to permit the assessments of individual and interdependent Re, Ro and Bu effects on the area-averaged heat transfer properties over leading and trailing endwalls.

Original languageEnglish
Title of host publicationASME Turbo Expo 2012
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2012
Pages219-228
Number of pages10
EditionPARTS A AND B
DOIs
Publication statusPublished - 2012 Dec 1
EventASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012 - Copenhagen, Denmark
Duration: 2012 Jun 112012 Jun 15

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume4

Other

OtherASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012
CountryDenmark
CityCopenhagen
Period12-06-1112-06-15

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Heat transfer of rotating rectangular channel with diamond shaped pin-fin array at high rotation numbers'. Together they form a unique fingerprint.

Cite this