Heterostructured graphitic carbon nitride/titanium dioxide for enhanced photodegradation of low-concentration formaldehyde under visible light

Shou-Heng Liu, Wei Xing Lin

Research output: Contribution to journalArticle

Abstract

In this study, a variety of heterostructured TiO 2 decorating graphitic carbon nitride (denoted as GCN/TiO 2 -x) photocatalysts is synthesized by using a simple calcination method. Among the prepared GCN/TiO 2 -x, GCN/TiO 2 -3.0 composites possess the remarkably lower recombination rates of electron-hole pairs (evidenced by photoluminescence) and more visible-light absorption (evidenced by ultraviolet/visible diffuse reflectance spectroscopy) as compared to pure GCN and TiO 2 , respectively. Accordingly, the GCN/TiO 2 -3.0 photocatalysts show the enhanced performance toward degradation of low-concentration formaldehyde (HCHO) (rate constant = 0.0043 min −1 ) that is much better than GCN (rate constant = 0.0012 min −1 ) and TiO 2 (rate constant = 0.0007 min −1 ) in the presence of visible light. This improvement observed for the photocatalytic degradation of gas phase HCHO can be probably caused by the heterojunction between GCN (the enhanced absorption of visible light) and TiO 2 (improved separation of photogenerated electron-hole pairs). The electron spin resonance (ESR) signals suggest the photogenerated superoxide radical anions (·O 2 -) and hole (h + ) may be responsible for the visible-light-driven photodecomposition of HCHO. This work provides a facile route to prepare efficient photocatalysts for indoor air purification by using interior lighting.

Original languageEnglish
Pages (from-to)66-73
Number of pages8
JournalJournal of Photochemistry and Photobiology A: Chemistry
Volume378
DOIs
Publication statusPublished - 2019 Jun 1

Fingerprint

carbon nitrides
Carbon nitride
Photodegradation
Photocatalysts
formaldehyde
Formaldehyde
titanium oxides
Titanium dioxide
low concentrations
Rate constants
Air purification
Degradation
air purification
Electrons
degradation
Superoxides
Calcination
photodecomposition
Light absorption
Anions

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Physics and Astronomy(all)

Cite this

@article{8b886b59ccf246028ee63dd3b8c0c516,
title = "Heterostructured graphitic carbon nitride/titanium dioxide for enhanced photodegradation of low-concentration formaldehyde under visible light",
abstract = "In this study, a variety of heterostructured TiO 2 decorating graphitic carbon nitride (denoted as GCN/TiO 2 -x) photocatalysts is synthesized by using a simple calcination method. Among the prepared GCN/TiO 2 -x, GCN/TiO 2 -3.0 composites possess the remarkably lower recombination rates of electron-hole pairs (evidenced by photoluminescence) and more visible-light absorption (evidenced by ultraviolet/visible diffuse reflectance spectroscopy) as compared to pure GCN and TiO 2 , respectively. Accordingly, the GCN/TiO 2 -3.0 photocatalysts show the enhanced performance toward degradation of low-concentration formaldehyde (HCHO) (rate constant = 0.0043 min −1 ) that is much better than GCN (rate constant = 0.0012 min −1 ) and TiO 2 (rate constant = 0.0007 min −1 ) in the presence of visible light. This improvement observed for the photocatalytic degradation of gas phase HCHO can be probably caused by the heterojunction between GCN (the enhanced absorption of visible light) and TiO 2 (improved separation of photogenerated electron-hole pairs). The electron spin resonance (ESR) signals suggest the photogenerated superoxide radical anions (·O 2 -) and hole (h + ) may be responsible for the visible-light-driven photodecomposition of HCHO. This work provides a facile route to prepare efficient photocatalysts for indoor air purification by using interior lighting.",
author = "Shou-Heng Liu and Lin, {Wei Xing}",
year = "2019",
month = "6",
day = "1",
doi = "10.1016/j.jphotochem.2019.04.025",
language = "English",
volume = "378",
pages = "66--73",
journal = "Journal of Photochemistry and Photobiology A: Chemistry",
issn = "1010-6030",
publisher = "Elsevier",

}

TY - JOUR

T1 - Heterostructured graphitic carbon nitride/titanium dioxide for enhanced photodegradation of low-concentration formaldehyde under visible light

AU - Liu, Shou-Heng

AU - Lin, Wei Xing

PY - 2019/6/1

Y1 - 2019/6/1

N2 - In this study, a variety of heterostructured TiO 2 decorating graphitic carbon nitride (denoted as GCN/TiO 2 -x) photocatalysts is synthesized by using a simple calcination method. Among the prepared GCN/TiO 2 -x, GCN/TiO 2 -3.0 composites possess the remarkably lower recombination rates of electron-hole pairs (evidenced by photoluminescence) and more visible-light absorption (evidenced by ultraviolet/visible diffuse reflectance spectroscopy) as compared to pure GCN and TiO 2 , respectively. Accordingly, the GCN/TiO 2 -3.0 photocatalysts show the enhanced performance toward degradation of low-concentration formaldehyde (HCHO) (rate constant = 0.0043 min −1 ) that is much better than GCN (rate constant = 0.0012 min −1 ) and TiO 2 (rate constant = 0.0007 min −1 ) in the presence of visible light. This improvement observed for the photocatalytic degradation of gas phase HCHO can be probably caused by the heterojunction between GCN (the enhanced absorption of visible light) and TiO 2 (improved separation of photogenerated electron-hole pairs). The electron spin resonance (ESR) signals suggest the photogenerated superoxide radical anions (·O 2 -) and hole (h + ) may be responsible for the visible-light-driven photodecomposition of HCHO. This work provides a facile route to prepare efficient photocatalysts for indoor air purification by using interior lighting.

AB - In this study, a variety of heterostructured TiO 2 decorating graphitic carbon nitride (denoted as GCN/TiO 2 -x) photocatalysts is synthesized by using a simple calcination method. Among the prepared GCN/TiO 2 -x, GCN/TiO 2 -3.0 composites possess the remarkably lower recombination rates of electron-hole pairs (evidenced by photoluminescence) and more visible-light absorption (evidenced by ultraviolet/visible diffuse reflectance spectroscopy) as compared to pure GCN and TiO 2 , respectively. Accordingly, the GCN/TiO 2 -3.0 photocatalysts show the enhanced performance toward degradation of low-concentration formaldehyde (HCHO) (rate constant = 0.0043 min −1 ) that is much better than GCN (rate constant = 0.0012 min −1 ) and TiO 2 (rate constant = 0.0007 min −1 ) in the presence of visible light. This improvement observed for the photocatalytic degradation of gas phase HCHO can be probably caused by the heterojunction between GCN (the enhanced absorption of visible light) and TiO 2 (improved separation of photogenerated electron-hole pairs). The electron spin resonance (ESR) signals suggest the photogenerated superoxide radical anions (·O 2 -) and hole (h + ) may be responsible for the visible-light-driven photodecomposition of HCHO. This work provides a facile route to prepare efficient photocatalysts for indoor air purification by using interior lighting.

UR - http://www.scopus.com/inward/record.url?scp=85064522316&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064522316&partnerID=8YFLogxK

U2 - 10.1016/j.jphotochem.2019.04.025

DO - 10.1016/j.jphotochem.2019.04.025

M3 - Article

VL - 378

SP - 66

EP - 73

JO - Journal of Photochemistry and Photobiology A: Chemistry

JF - Journal of Photochemistry and Photobiology A: Chemistry

SN - 1010-6030

ER -