Abstract
We demonstrate high-efficiency red electrophosphorescent organic light-emitting devices (OLEDs) by doping a red-emitting iridium complex, Bis[7-methyl-1-p- tolyisoquinolinato-N,C2′]-iridium(III)(acetylacetonate) [(7-mtiq)2Ir(acac)], into a hole-blocking material, 4-biphenyloxolato aluminum(III)bis(2-methyl-8- quinolinato)4-phenylphenolate. Both the phosphorescent characteristics of (7-mtiq)2Ir(acac) and the electroluminescence mechanisms of OLEDs are investigated in this study. The Commission Internationale de L'Eclairage coordinates of (0.66, 0.34) is very close to the National Television System Committee standard red point (0.66, 0.33). With a dopant concentration of about 4%, a maximum luminance of 31317 cd/m2 and a luminous efficiency of 21.6 cd/A have been obtained.
Original language | English |
---|---|
Pages (from-to) | 3788-3791 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 517 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2009 May 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry