TY - JOUR
T1 - High-Performance Al/PDMS TENG with Novel Complex Morphology of Two-Height Microneedles Array for High-Sensitivity Force-Sensor and Self-Powered Application
AU - Ke, Kai Hong
AU - Chung, Chen Kuei
N1 - Funding Information:
This work is partially sponsored by the Ministry of Science and Technology (MOST), Taiwan, under contract No MOST108‐2221‐E‐006‐187.
Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Triboelectric nanogenerators (TENGs) are widely applied to self-powered devices and force sensors. TENGs consist of the electrode-layer frequently made of high-cost conductors (Ag, Au, ITO) and the tribo-layer of rigid negative-triboelectricity fluoropolymers (PTFE, FEP). The surface morpholoy is studied for enhancing performance. Here, a high-performance Al/PDMS-TENG is proposed with a complex morphology of overlapped deep two-height microneedles (OL-DTH-MN) fabricated by the integrated process of low-cost CO2 laser ablation and PDMS casting for self-powered devices and high-sensitivity force/pressure sensors. The high open-circuit voltage and short-circuit current of the OL-DTH-MN-TENG are 167 V and 129.3 µA. Also, the sensitivity of the force/pressure sensor of the OL-DTH-MN-TENG is very high, 1.03 V N−1 and about 3.11 V kPa−1, at an area of 30 cm2 that is much higher than the sensitivity of about 0.18–0.414 V N−1 and 0.013–0.29 V kPa−1 of conventional TENG sensors. Meanwhile, the high-performance OL-DTH-MN-TENG not only exhibits the energy storage capability of charging a 0.1 µF capacitor to 2.75 V at 1.19 s, to maximum 3.22 V, but also activates various self-powered devices including lighting colorful 226 LEDs connected in series, the “2020-ME-NCKU” advertising board, a calculator and a temperature sensor. Numerical simulation is also performed to support the experiments.
AB - Triboelectric nanogenerators (TENGs) are widely applied to self-powered devices and force sensors. TENGs consist of the electrode-layer frequently made of high-cost conductors (Ag, Au, ITO) and the tribo-layer of rigid negative-triboelectricity fluoropolymers (PTFE, FEP). The surface morpholoy is studied for enhancing performance. Here, a high-performance Al/PDMS-TENG is proposed with a complex morphology of overlapped deep two-height microneedles (OL-DTH-MN) fabricated by the integrated process of low-cost CO2 laser ablation and PDMS casting for self-powered devices and high-sensitivity force/pressure sensors. The high open-circuit voltage and short-circuit current of the OL-DTH-MN-TENG are 167 V and 129.3 µA. Also, the sensitivity of the force/pressure sensor of the OL-DTH-MN-TENG is very high, 1.03 V N−1 and about 3.11 V kPa−1, at an area of 30 cm2 that is much higher than the sensitivity of about 0.18–0.414 V N−1 and 0.013–0.29 V kPa−1 of conventional TENG sensors. Meanwhile, the high-performance OL-DTH-MN-TENG not only exhibits the energy storage capability of charging a 0.1 µF capacitor to 2.75 V at 1.19 s, to maximum 3.22 V, but also activates various self-powered devices including lighting colorful 226 LEDs connected in series, the “2020-ME-NCKU” advertising board, a calculator and a temperature sensor. Numerical simulation is also performed to support the experiments.
UR - http://www.scopus.com/inward/record.url?scp=85087203941&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087203941&partnerID=8YFLogxK
U2 - 10.1002/smll.202001209
DO - 10.1002/smll.202001209
M3 - Article
C2 - 32583613
AN - SCOPUS:85087203941
SN - 1613-6810
VL - 16
JO - Small
JF - Small
IS - 35
M1 - 2001209
ER -