High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode

Fitri Nur Indah Sari, Jyh-Ming Ting

Research output: Contribution to journalArticle

Abstract

3D networked polypyrrole (PPy) nanotube/N-doped graphene (NDG) has been fabricated through a facile two-step method, in-situ polymerization assisted by MoO3 template and a microwave-assisted hydrothermal method at a short time. The MoO3 template-assisted polymerization is demonstrated as an effective way to obtain PPy nanotubes with controlled thickness. It is found that the PPy nanotube formation and N doping of reduced graphene oxide occur simultaneously during the microwave process at short time. Due to the unique structure and excellent electrical conductivity, the PPy nanotube/NDG shows extremely small equivalent series resistance of 1.7 Ω, charge transfer resistance (Rc) of 0.1 Ω, pore resistance (Rd) of 0.1 Ω, and specific capacitance (Csp) of 292 F g−1 at 5 mV s−1. Also, a novel MoS2-decorated core-shelled MoO3/PPy has also been fabricated through a facile method. Owing to the unique structure and rich redox activities, MoS2-decorated core-shelled MoO3/PPy shows excellent performance with Csp of 527 F g−1 at 5 mV s−1 and low charge transfer resistance of 0.5 Ω. Furthermore, an aqueous asymmetric supercapacitor, consisting of MoS2/MoO3/PPy positive electrode and PPy nanotube/NDG negative electrode, has been constructed. The asymmetric supercapacitor shows an excellent energy density of 43.2 Wh kg−1 at power density of 674 W kg−1. The asymmetric supercapacitor also shows an excellent retention of 126% after 5000 cycles, possess high potential for application in the energy storage.

Original languageEnglish
Article number134533
JournalElectrochimica Acta
Volume320
DOIs
Publication statusPublished - 2019 Oct 10

Fingerprint

Graphite
Polypyrroles
Graphene
Nanotubes
Electrodes
Charge transfer
Microwaves
Polymerization
Supercapacitor
polypyrrole
molybdenum trioxide
Energy storage
Oxides
Capacitance
Doping (additives)

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Electrochemistry

Cite this

@article{e600b15694cb4589a2c3226bc634ebf6,
title = "High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode",
abstract = "3D networked polypyrrole (PPy) nanotube/N-doped graphene (NDG) has been fabricated through a facile two-step method, in-situ polymerization assisted by MoO3 template and a microwave-assisted hydrothermal method at a short time. The MoO3 template-assisted polymerization is demonstrated as an effective way to obtain PPy nanotubes with controlled thickness. It is found that the PPy nanotube formation and N doping of reduced graphene oxide occur simultaneously during the microwave process at short time. Due to the unique structure and excellent electrical conductivity, the PPy nanotube/NDG shows extremely small equivalent series resistance of 1.7 Ω, charge transfer resistance (Rc) of 0.1 Ω, pore resistance (Rd) of 0.1 Ω, and specific capacitance (Csp) of 292 F g−1 at 5 mV s−1. Also, a novel MoS2-decorated core-shelled MoO3/PPy has also been fabricated through a facile method. Owing to the unique structure and rich redox activities, MoS2-decorated core-shelled MoO3/PPy shows excellent performance with Csp of 527 F g−1 at 5 mV s−1 and low charge transfer resistance of 0.5 Ω. Furthermore, an aqueous asymmetric supercapacitor, consisting of MoS2/MoO3/PPy positive electrode and PPy nanotube/NDG negative electrode, has been constructed. The asymmetric supercapacitor shows an excellent energy density of 43.2 Wh kg−1 at power density of 674 W kg−1. The asymmetric supercapacitor also shows an excellent retention of 126{\%} after 5000 cycles, possess high potential for application in the energy storage.",
author = "{Indah Sari}, {Fitri Nur} and Jyh-Ming Ting",
year = "2019",
month = "10",
day = "10",
doi = "10.1016/j.electacta.2019.07.044",
language = "English",
volume = "320",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode

AU - Indah Sari, Fitri Nur

AU - Ting, Jyh-Ming

PY - 2019/10/10

Y1 - 2019/10/10

N2 - 3D networked polypyrrole (PPy) nanotube/N-doped graphene (NDG) has been fabricated through a facile two-step method, in-situ polymerization assisted by MoO3 template and a microwave-assisted hydrothermal method at a short time. The MoO3 template-assisted polymerization is demonstrated as an effective way to obtain PPy nanotubes with controlled thickness. It is found that the PPy nanotube formation and N doping of reduced graphene oxide occur simultaneously during the microwave process at short time. Due to the unique structure and excellent electrical conductivity, the PPy nanotube/NDG shows extremely small equivalent series resistance of 1.7 Ω, charge transfer resistance (Rc) of 0.1 Ω, pore resistance (Rd) of 0.1 Ω, and specific capacitance (Csp) of 292 F g−1 at 5 mV s−1. Also, a novel MoS2-decorated core-shelled MoO3/PPy has also been fabricated through a facile method. Owing to the unique structure and rich redox activities, MoS2-decorated core-shelled MoO3/PPy shows excellent performance with Csp of 527 F g−1 at 5 mV s−1 and low charge transfer resistance of 0.5 Ω. Furthermore, an aqueous asymmetric supercapacitor, consisting of MoS2/MoO3/PPy positive electrode and PPy nanotube/NDG negative electrode, has been constructed. The asymmetric supercapacitor shows an excellent energy density of 43.2 Wh kg−1 at power density of 674 W kg−1. The asymmetric supercapacitor also shows an excellent retention of 126% after 5000 cycles, possess high potential for application in the energy storage.

AB - 3D networked polypyrrole (PPy) nanotube/N-doped graphene (NDG) has been fabricated through a facile two-step method, in-situ polymerization assisted by MoO3 template and a microwave-assisted hydrothermal method at a short time. The MoO3 template-assisted polymerization is demonstrated as an effective way to obtain PPy nanotubes with controlled thickness. It is found that the PPy nanotube formation and N doping of reduced graphene oxide occur simultaneously during the microwave process at short time. Due to the unique structure and excellent electrical conductivity, the PPy nanotube/NDG shows extremely small equivalent series resistance of 1.7 Ω, charge transfer resistance (Rc) of 0.1 Ω, pore resistance (Rd) of 0.1 Ω, and specific capacitance (Csp) of 292 F g−1 at 5 mV s−1. Also, a novel MoS2-decorated core-shelled MoO3/PPy has also been fabricated through a facile method. Owing to the unique structure and rich redox activities, MoS2-decorated core-shelled MoO3/PPy shows excellent performance with Csp of 527 F g−1 at 5 mV s−1 and low charge transfer resistance of 0.5 Ω. Furthermore, an aqueous asymmetric supercapacitor, consisting of MoS2/MoO3/PPy positive electrode and PPy nanotube/NDG negative electrode, has been constructed. The asymmetric supercapacitor shows an excellent energy density of 43.2 Wh kg−1 at power density of 674 W kg−1. The asymmetric supercapacitor also shows an excellent retention of 126% after 5000 cycles, possess high potential for application in the energy storage.

UR - http://www.scopus.com/inward/record.url?scp=85069674448&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069674448&partnerID=8YFLogxK

U2 - 10.1016/j.electacta.2019.07.044

DO - 10.1016/j.electacta.2019.07.044

M3 - Article

AN - SCOPUS:85069674448

VL - 320

JO - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

M1 - 134533

ER -