High performance carbon black counter electrodes for dye-sensitized solar cells

Chia Shing Wu, Ting Wei Chang, Hsisheng Teng, Yuh Lang Lee

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Carbon black (CB) thin films are prepared using a doctor blade process and utilized as counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Poly(vinylidene fluoride) (PVDF) is used as a binder to regulate the viscosity of the CB paste to facilitate the doctor blade process. The PVDF is then removed via thermal treatment at 350 or 450 °C. The effects of CB composition (8-15 wt%) and the heat-treatment temperature on the electrochemical properties of the CB electrodes are studied, as well as on the performance of the corresponding DSSCs. The results show that, after the heat treatment, all CB films demonstrate a mesoporous structure. Film thickness increases with increased CB concentration. CB films heat-treated at 350 °C exhibit low electrochemical activity, high charge transfer resistance, and poor performance when utilized in DSSCs. These results are attributed to the presence of residual PVDF. By elevating the treating temperature to 450 °C, PVDF is completely removed and the electrochemical properties of the resultant CB films resemble closely those of platinum (Pt) film. The DSSCs using these CB CEs achieve conversion efficiencies (8.27–8.35%) comparable to cells using Pt (8.29%).

Original languageEnglish
Pages (from-to)513-518
Number of pages6
JournalEnergy
Volume115
DOIs
Publication statusPublished - 2016 Nov 15

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Pollution
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'High performance carbon black counter electrodes for dye-sensitized solar cells'. Together they form a unique fingerprint.

  • Cite this