High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks

Ping Lin Kuo, Chun Han Hsu, Huan Te Chiang, Jung Mu Hsu

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.

Original languageEnglish
Article number1966
JournalJournal of Nanoparticle Research
Volume15
Issue number12
DOIs
Publication statusPublished - 2013 Dec

Fingerprint

Graphite
Graphene
graphene
Three-dimensional
Carbon
carbon
LiFePO4
Scaffold
sucrose
Hybrid materials
dispersing
Sugar (sucrose)
Sucrose
Transmission Electron Microscopy
Scanning Electron Microscopy
Skeleton
musculoskeletal system
Lithium
X-ray Diffraction
Scaffolds

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Atomic and Molecular Physics, and Optics
  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics

Cite this

@article{8ed4c7561538480fbccf9dc225f4e253,
title = "High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks",
abstract = "A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.",
author = "Kuo, {Ping Lin} and Hsu, {Chun Han} and Chiang, {Huan Te} and Hsu, {Jung Mu}",
year = "2013",
month = "12",
doi = "10.1007/s11051-013-1966-x",
language = "English",
volume = "15",
journal = "Journal of Nanoparticle Research",
issn = "1388-0764",
publisher = "Springer Netherlands",
number = "12",

}

High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks. / Kuo, Ping Lin; Hsu, Chun Han; Chiang, Huan Te; Hsu, Jung Mu.

In: Journal of Nanoparticle Research, Vol. 15, No. 12, 1966, 12.2013.

Research output: Contribution to journalArticle

TY - JOUR

T1 - High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks

AU - Kuo, Ping Lin

AU - Hsu, Chun Han

AU - Chiang, Huan Te

AU - Hsu, Jung Mu

PY - 2013/12

Y1 - 2013/12

N2 - A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.

AB - A sample of nanosized LiFePO4/graphene/carbon (NLFP/GC) hybrid material was achieved by homogenously dispersing a lab-fabricated NLFP (<100 nm) preparation inside well-exfoliated graphene, followed by carbon coating on the NLFP to constitute a three-dimensional network. For comparison, the NLFP coated with sucrose (NLFP/C) and the NLFP solely dispersed in graphene (NLFP/G) were prepared and evaluated. For these as-prepared products, the purity of the LFP component was characterized by X-ray diffraction, while the morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanosized and homogeneously dispersed NLFP/C in composite insures high capacities, indicating that can significantly shorten the pathway for lithium ion diffusion. Under different charge/discharge rates, the capacities of NLFP/GC are all higher than those of NLFP, NLFP/C, and NLFP/G. Also, NLFP/GC exhibited the excellent rate performance of 101 mAh g-1 compared to NLFP/C (ca. 0 mAh g-1) and NLFP/G (58 mAh g -1) at 10C. It is clear that the three-dimensional graphene network of NLFP/GC, very efficiently promote the conductivity of the poorly conductive LiFePO4. Also, the graphene skeleton can serve as a solid scaffold to restrain the aggregation of NLFP. The outstanding electrochemical performance of NLFP/GC derives from the nanosized NLFP in combination with the graphene/carbon layer.

UR - http://www.scopus.com/inward/record.url?scp=84886832460&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84886832460&partnerID=8YFLogxK

U2 - 10.1007/s11051-013-1966-x

DO - 10.1007/s11051-013-1966-x

M3 - Article

AN - SCOPUS:84886832460

VL - 15

JO - Journal of Nanoparticle Research

JF - Journal of Nanoparticle Research

SN - 1388-0764

IS - 12

M1 - 1966

ER -