Abstract
Among the emerging types of memory, resistive random-access memory (ReRAM) units offer faster write speeds and consume less power than those of flash memory units. With the advancement of 3-D stack technology, 3-D nonvolatile memories (NVMs) are under active development to satisfy the requirements of new applications. This brief proposes a 1.5 F2/bit nonlinear sub-teraohm vertical ReRAM (V-ReRAM) and a sensing ultrahigh-resistance read scheme that not only accurately senses sub-picoampere currents but also reduces sneak current effects. A 2-Kb V-ReRAM macro unit was fabricated using a 0.15-μ m CMOS process and the Industrial Technology Research Institute's zero-transistor-four-ReRAM V-ReRAM back-end-of-line process. The proposed read scheme increased the sensing margin by eight times when compared with the current-mirror type, a commonly used read scheme for NVMs. Additionally, the memory bit size was smaller than one-transistor-N-ReRAM V-ReRAM.
Original language | English |
---|---|
Article number | 8123866 |
Pages (from-to) | 1234-1238 |
Number of pages | 5 |
Journal | IEEE Transactions on Circuits and Systems II: Express Briefs |
Volume | 65 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2018 Sep |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering