TY - JOUR
T1 - How the parameter-setting affects the inferential capability of artificial neural network -with the corresponding relationship between products form and Kansei images as example
AU - Chou, Chun Juei
AU - Chen, Kuohsiang
PY - 2002/11
Y1 - 2002/11
N2 - Artificial Neural Network (ANN) has been considered as a better model for inference in the field of Kansei Engineering research. However, the setting of parameters might strongly affect its inferential capability. For this reason, the authors researched on how the parameter-setting in ANN affected its inferential capability, and took the corresponding relationship between products form and Kansei images as example. The parameters mentioned above include three types of coding for nominal scale, four different numbers of hidden units, ten different learning rates and two opposite input and output settings. The results indicated that the coding type for nominal scale set to "on/off" type, number of hidden units set to the product of that of input units and output units, learning rate set to 1.0, formal elements (nominal scale) as input and Kansei images (rank scale) as output could achieve better analytical and inferential outcome.
AB - Artificial Neural Network (ANN) has been considered as a better model for inference in the field of Kansei Engineering research. However, the setting of parameters might strongly affect its inferential capability. For this reason, the authors researched on how the parameter-setting in ANN affected its inferential capability, and took the corresponding relationship between products form and Kansei images as example. The parameters mentioned above include three types of coding for nominal scale, four different numbers of hidden units, ten different learning rates and two opposite input and output settings. The results indicated that the coding type for nominal scale set to "on/off" type, number of hidden units set to the product of that of input units and output units, learning rate set to 1.0, formal elements (nominal scale) as input and Kansei images (rank scale) as output could achieve better analytical and inferential outcome.
UR - http://www.scopus.com/inward/record.url?scp=24644509679&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24644509679&partnerID=8YFLogxK
U2 - 10.1080/10170660209509362
DO - 10.1080/10170660209509362
M3 - Article
AN - SCOPUS:24644509679
VL - 19
SP - 1
EP - 12
JO - Journal of Industrial and Production Engineering
JF - Journal of Industrial and Production Engineering
SN - 2168-1015
IS - 6
ER -