Human powered MEMS-based energy harvest devices

Chung Yang Sue, Nan Chyuan Tsai

Research output: Contribution to journalReview articlepeer-review

165 Citations (Scopus)


The lifespan and stability of power supply are the most critical issues for implantable biomedical devices (IMDs). Extracting energy from the ambient sources or human body therefore attracts a lot of attentions for in vivo therapies. Micro-electromechanical systems (MEMSs) based energy harvesters are expected to be one of the potential solutions to supply electrical power to IMDs owing to its tiny size, light weight and recharge-free attributes. However, the performance of the micro-energy harvester for implantable biomedical applications is limited by many inherent congenital factors. In this paper, three main topics are comprehensively studied and discussed. At first, the energy sources to be scavenged from human body are particularly investigated and characterized. Secondly, the operation principle and key bottlenecks of the currently available MEMS-based energy harvesters are reviewed and presented. Finally, the performance, frequency tuning methods and biocompatibility of micro-energy harvester are evaluated and summarized.

Original languageEnglish
Pages (from-to)390-403
Number of pages14
JournalApplied Energy
Publication statusPublished - 2012 May

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Human powered MEMS-based energy harvest devices'. Together they form a unique fingerprint.

Cite this