Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace

Wei Hsin Chen, Mu Rong Lin, A. B. Yu, Shan Wen Du, Tzong Shyng Leu

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

Hydrogen and synthesis gas (syngas) can be produced from steam reforming (SR) of coke oven gas (COG). When the reforming gas is used for indirect reduction (IR) of iron oxides in blast furnaces (BFs), carbon dioxide emissions can be lessened. Motivated from utilizing hydrogen and mitigating greenhouse gas emissions in ironmaking, the reaction phenomena of SR of COG are investigated thermodynamically. Low-temperature and high-temperature IR of iron oxides using reforming gas as a feedstock is also analyzed. With appropriate operating conditions, the maximum H 2 and syngas yields are 3.5 and 4.2 mol (mol fuel) -1, respectively. Two different reforming gases are employed to reduce iron oxides. When the reforming gas/hematite (R/H) molar ratio is no less than 1, Fe 2O 3 conversion is always higher than 98.5%, whether low-temperature or high-temperature IR is carried out. This reveals that COG possesses the potential as a reducing agent in BFs. The reactions of IR from the two reforming gases are almost identical, implying that the operation of SR from COG for producing hydrogen or syngas and reducing iron oxides in BFs is flexible.

Original languageEnglish
Pages (from-to)11748-11758
Number of pages11
JournalInternational Journal of Hydrogen Energy
Volume37
Issue number16
DOIs
Publication statusPublished - 2012 Aug

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace'. Together they form a unique fingerprint.

Cite this