Abstract
Quasi-monocrystal ZnO film grown using the hydrothermal growth method is used for the fabrication of Cu/ZnO heterojunction (HJ) ultraviolet photodetectors (UV-PDs). The HJ was formed via the sputtering deposition of p-type Cu onto hydrothermally grown ZnO film (HTG-ZnO-film). The effect of annealing temperature in the nitrogen ambient on the photoluminescence spectra of the synthesized ZnO film was studied. The optoelectronic properties of Cu/ZnO film with various Cu thicknesses (250-750 nm) under UV light (365 nm; intensity: 3 mW/cm2) were determined. The UV sensitivity of the HTG-ZnO-film-based UV-PDs and the sputtered ZnO-film-based UV-PDs were 55.6-fold (SHTG) and 8.8-fold (Ssputter), respectively. The significant gain in sensitivity (SHTG/Ssputter = 630%) of the proposed ZnO-film-based device compared to that for the device based on sputtered film can be attributed to the improved photoelectric properties of quasi-monocrystal ZnO film.
Original language | English |
---|---|
Article number | 261372 |
Journal | International Journal of Photoenergy |
Volume | 2015 |
DOIs | |
Publication status | Published - 2015 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Atomic and Molecular Physics, and Optics
- Renewable Energy, Sustainability and the Environment
- General Materials Science