TY - JOUR
T1 - Hyperbolic conservation laws with a moving source
AU - Lien, Wen-Ching
PY - 1999/1/1
Y1 - 1999/1/1
N2 - The purpose of this paper is to investigate the wave behavior of hyperbolic conservation laws with a moving source. When the speed of the source is close to one of the characteristic speeds of the system, nonlinear resonance occurs and instability may result. We will study solutions with a single transonic shock wave for a general system ut + f(u)x = g(x, u). Suppose that the ith characteristic speed is close to zero. We propose the following stability criteria: li∂g/∂uri < 0 for nonlinear stability, li∂g/∂uri > 0 for nonlinear stability. Here li and ri are the ith normalized left and right eigenvectors of df/du, respectively. Through the local analysis on the evolution of the speed and strength of the transonic shock wave, the above criterion can be justified. It turns out that the speed of the transonic shock wave is monotone increasing (decreasing) most of the time in the unstable (stable) case. This is shown by introducing a global functional on nonlinear wave interactions, based on the Glimm scheme. In particular, together with the local analysis, we can study the shock speed globally. Such a global approach is absent in the previous works. Using this strategy, we prove the existence of solutions and verify the asymptotic stability (or instability).
AB - The purpose of this paper is to investigate the wave behavior of hyperbolic conservation laws with a moving source. When the speed of the source is close to one of the characteristic speeds of the system, nonlinear resonance occurs and instability may result. We will study solutions with a single transonic shock wave for a general system ut + f(u)x = g(x, u). Suppose that the ith characteristic speed is close to zero. We propose the following stability criteria: li∂g/∂uri < 0 for nonlinear stability, li∂g/∂uri > 0 for nonlinear stability. Here li and ri are the ith normalized left and right eigenvectors of df/du, respectively. Through the local analysis on the evolution of the speed and strength of the transonic shock wave, the above criterion can be justified. It turns out that the speed of the transonic shock wave is monotone increasing (decreasing) most of the time in the unstable (stable) case. This is shown by introducing a global functional on nonlinear wave interactions, based on the Glimm scheme. In particular, together with the local analysis, we can study the shock speed globally. Such a global approach is absent in the previous works. Using this strategy, we prove the existence of solutions and verify the asymptotic stability (or instability).
UR - http://www.scopus.com/inward/record.url?scp=0033462778&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033462778&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1097-0312(199909)52:9<1075::AID-CPA2>3.0.CO;2-4
DO - 10.1002/(SICI)1097-0312(199909)52:9<1075::AID-CPA2>3.0.CO;2-4
M3 - Article
AN - SCOPUS:0033462778
SN - 0010-3640
VL - 52
SP - 1075
EP - 1098
JO - Communications on Pure and Applied Mathematics
JF - Communications on Pure and Applied Mathematics
IS - 9
ER -