Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice

Chi Tun Ruan, Sio-Hong Lam, Shoei Sheng Lee, Ming Jai Su

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Aim: This study explores the hypoglycemic effects of borapetoside A, the most active principle among three major diterpenoids (borapetosides A, B, and C) isolated from ethanol extract of Tinospora crispa vines. Methods: We employed mouse mitogenic C2C12 and hepatocellular carcinoma Hep3B cells in this study. Furthermore, the mice were divided into three groups, including streptozotocin-induced type 1 diabetes mellitus, diet-induced type 2 diabetes mellitus, and normal control. The mice in each group were treated with assigned vehicle control, borapetoside A, or other active agents. Results: Borapetoside A was shown to increase the glycogen content and decrease the plasma glucose concentration in a concentration or dose-dependent manner in vitro and in vivo. The hypoglycemic effects in the normal mice and the mice with type 2 diabetes mellitus were associated with the increases of the plasma insulin levels; whereas, the insulin levels remained unchanged in the mice with type 1 diabetes mellitus. Borapetoside A not only attenuated the elevation of plasma glucose induced by an intraperitoneal glucose tolerance test, but also increased the glycogen synthesis of IL-6 treated C2C12 cells. Moreover, the elevated protein expression levels of phosphoenolpyruvate carboxykinase were reversed after borapetoside A treatment twice a day for 7 days. Conclusions: The hypoglycemic effects of borapetoside A were mediated through both the insulin-dependent and the insulin-independent pathways. Furthermore, borapetoside A was shown to increase the glucose utilization in peripheral tissues, to reduce the hepatic gluconeogenesis, and to activate the insulin signaling pathway; they thereby contributed to the lowering of the plasma glucose. Comparison of the structures of three borapetosides suggests clearly that the C-8 stereochemistry plays a key role in hypoglycemic effect since the active borapetoside A and C possess 8R-chirality but the inactive borapetoside B possess 8S-chirality. The location of glycoside at C-3 for borapetoside A but C-6 for borapetoside C and the formation of lactone between C-4 and C-6 for borapetoside A, could account for the different potency in hypoglycemic action for these two compounds.

Original languageEnglish
Pages (from-to)667-675
Number of pages9
JournalPhytomedicine
Volume20
Issue number8-9
DOIs
Publication statusPublished - 2013 Jun 15

Fingerprint

Tinospora
Hypoglycemic Agents
Insulin
Glucose
Glycogen
Type 1 Diabetes Mellitus
Type 2 Diabetes Mellitus
borapetoside A
Phosphoenolpyruvate
Gluconeogenesis
Diterpenes
Lactones
Glucose Tolerance Test
Streptozocin

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Drug Discovery
  • Complementary and alternative medicine

Cite this

Ruan, Chi Tun ; Lam, Sio-Hong ; Lee, Shoei Sheng ; Su, Ming Jai. / Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice. In: Phytomedicine. 2013 ; Vol. 20, No. 8-9. pp. 667-675.
@article{a6c5df359751407690aed56bbf82663e,
title = "Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice",
abstract = "Aim: This study explores the hypoglycemic effects of borapetoside A, the most active principle among three major diterpenoids (borapetosides A, B, and C) isolated from ethanol extract of Tinospora crispa vines. Methods: We employed mouse mitogenic C2C12 and hepatocellular carcinoma Hep3B cells in this study. Furthermore, the mice were divided into three groups, including streptozotocin-induced type 1 diabetes mellitus, diet-induced type 2 diabetes mellitus, and normal control. The mice in each group were treated with assigned vehicle control, borapetoside A, or other active agents. Results: Borapetoside A was shown to increase the glycogen content and decrease the plasma glucose concentration in a concentration or dose-dependent manner in vitro and in vivo. The hypoglycemic effects in the normal mice and the mice with type 2 diabetes mellitus were associated with the increases of the plasma insulin levels; whereas, the insulin levels remained unchanged in the mice with type 1 diabetes mellitus. Borapetoside A not only attenuated the elevation of plasma glucose induced by an intraperitoneal glucose tolerance test, but also increased the glycogen synthesis of IL-6 treated C2C12 cells. Moreover, the elevated protein expression levels of phosphoenolpyruvate carboxykinase were reversed after borapetoside A treatment twice a day for 7 days. Conclusions: The hypoglycemic effects of borapetoside A were mediated through both the insulin-dependent and the insulin-independent pathways. Furthermore, borapetoside A was shown to increase the glucose utilization in peripheral tissues, to reduce the hepatic gluconeogenesis, and to activate the insulin signaling pathway; they thereby contributed to the lowering of the plasma glucose. Comparison of the structures of three borapetosides suggests clearly that the C-8 stereochemistry plays a key role in hypoglycemic effect since the active borapetoside A and C possess 8R-chirality but the inactive borapetoside B possess 8S-chirality. The location of glycoside at C-3 for borapetoside A but C-6 for borapetoside C and the formation of lactone between C-4 and C-6 for borapetoside A, could account for the different potency in hypoglycemic action for these two compounds.",
author = "Ruan, {Chi Tun} and Sio-Hong Lam and Lee, {Shoei Sheng} and Su, {Ming Jai}",
year = "2013",
month = "6",
day = "15",
doi = "10.1016/j.phymed.2013.02.009",
language = "English",
volume = "20",
pages = "667--675",
journal = "Phytomedicine",
issn = "0944-7113",
publisher = "Urban und Fischer Verlag Jena",
number = "8-9",

}

Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice. / Ruan, Chi Tun; Lam, Sio-Hong; Lee, Shoei Sheng; Su, Ming Jai.

In: Phytomedicine, Vol. 20, No. 8-9, 15.06.2013, p. 667-675.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice

AU - Ruan, Chi Tun

AU - Lam, Sio-Hong

AU - Lee, Shoei Sheng

AU - Su, Ming Jai

PY - 2013/6/15

Y1 - 2013/6/15

N2 - Aim: This study explores the hypoglycemic effects of borapetoside A, the most active principle among three major diterpenoids (borapetosides A, B, and C) isolated from ethanol extract of Tinospora crispa vines. Methods: We employed mouse mitogenic C2C12 and hepatocellular carcinoma Hep3B cells in this study. Furthermore, the mice were divided into three groups, including streptozotocin-induced type 1 diabetes mellitus, diet-induced type 2 diabetes mellitus, and normal control. The mice in each group were treated with assigned vehicle control, borapetoside A, or other active agents. Results: Borapetoside A was shown to increase the glycogen content and decrease the plasma glucose concentration in a concentration or dose-dependent manner in vitro and in vivo. The hypoglycemic effects in the normal mice and the mice with type 2 diabetes mellitus were associated with the increases of the plasma insulin levels; whereas, the insulin levels remained unchanged in the mice with type 1 diabetes mellitus. Borapetoside A not only attenuated the elevation of plasma glucose induced by an intraperitoneal glucose tolerance test, but also increased the glycogen synthesis of IL-6 treated C2C12 cells. Moreover, the elevated protein expression levels of phosphoenolpyruvate carboxykinase were reversed after borapetoside A treatment twice a day for 7 days. Conclusions: The hypoglycemic effects of borapetoside A were mediated through both the insulin-dependent and the insulin-independent pathways. Furthermore, borapetoside A was shown to increase the glucose utilization in peripheral tissues, to reduce the hepatic gluconeogenesis, and to activate the insulin signaling pathway; they thereby contributed to the lowering of the plasma glucose. Comparison of the structures of three borapetosides suggests clearly that the C-8 stereochemistry plays a key role in hypoglycemic effect since the active borapetoside A and C possess 8R-chirality but the inactive borapetoside B possess 8S-chirality. The location of glycoside at C-3 for borapetoside A but C-6 for borapetoside C and the formation of lactone between C-4 and C-6 for borapetoside A, could account for the different potency in hypoglycemic action for these two compounds.

AB - Aim: This study explores the hypoglycemic effects of borapetoside A, the most active principle among three major diterpenoids (borapetosides A, B, and C) isolated from ethanol extract of Tinospora crispa vines. Methods: We employed mouse mitogenic C2C12 and hepatocellular carcinoma Hep3B cells in this study. Furthermore, the mice were divided into three groups, including streptozotocin-induced type 1 diabetes mellitus, diet-induced type 2 diabetes mellitus, and normal control. The mice in each group were treated with assigned vehicle control, borapetoside A, or other active agents. Results: Borapetoside A was shown to increase the glycogen content and decrease the plasma glucose concentration in a concentration or dose-dependent manner in vitro and in vivo. The hypoglycemic effects in the normal mice and the mice with type 2 diabetes mellitus were associated with the increases of the plasma insulin levels; whereas, the insulin levels remained unchanged in the mice with type 1 diabetes mellitus. Borapetoside A not only attenuated the elevation of plasma glucose induced by an intraperitoneal glucose tolerance test, but also increased the glycogen synthesis of IL-6 treated C2C12 cells. Moreover, the elevated protein expression levels of phosphoenolpyruvate carboxykinase were reversed after borapetoside A treatment twice a day for 7 days. Conclusions: The hypoglycemic effects of borapetoside A were mediated through both the insulin-dependent and the insulin-independent pathways. Furthermore, borapetoside A was shown to increase the glucose utilization in peripheral tissues, to reduce the hepatic gluconeogenesis, and to activate the insulin signaling pathway; they thereby contributed to the lowering of the plasma glucose. Comparison of the structures of three borapetosides suggests clearly that the C-8 stereochemistry plays a key role in hypoglycemic effect since the active borapetoside A and C possess 8R-chirality but the inactive borapetoside B possess 8S-chirality. The location of glycoside at C-3 for borapetoside A but C-6 for borapetoside C and the formation of lactone between C-4 and C-6 for borapetoside A, could account for the different potency in hypoglycemic action for these two compounds.

UR - http://www.scopus.com/inward/record.url?scp=84878111064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878111064&partnerID=8YFLogxK

U2 - 10.1016/j.phymed.2013.02.009

DO - 10.1016/j.phymed.2013.02.009

M3 - Article

C2 - 23523259

AN - SCOPUS:84878111064

VL - 20

SP - 667

EP - 675

JO - Phytomedicine

JF - Phytomedicine

SN - 0944-7113

IS - 8-9

ER -