Identification of chimeric repressors that confer salt and osmotic stress tolerance in arabidopsis

Daisuke Kazama, Masateru Itakura, Takamitsu Kurusu, Nobutaka Mitsuda, Masaru Ohme-Takagi, Yuichi Tada

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

We produced transgenic Arabidopsis plants that express chimeric genes for transcription factors converted to dominant repressors, using Chimeric REpressor gene-Silencing Technology (CRES-T), and evaluated the salt tolerance of each line. The seeds of the CRES-T lines for ADA2b, Msantd, DDF1, DREB26, AtGeBP, and ATHB23 exhibited higher germination rates than Wild type (WT) and developed rosette plants under up to 200 mM NaCl or 400 mM mannitol. WT plants did not grow under these conditions. In these CRES-T lines, the expression patterns of stress-related genes such as RD29A, RD22, DREB1A, and P5CS differed from those in WT plants, suggesting the involvement of the six transcription factors identified here in the stress response pathways regulated by the products of these stress-related genes. Our results demonstrate additional proof that CRES-T is a superior tool for revealing the function of transcription factors.

Original languageEnglish
Pages (from-to)769-785
Number of pages17
JournalPlants
Volume2
Issue number4
DOIs
Publication statusPublished - 2013 Dec

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science

Fingerprint

Dive into the research topics of 'Identification of chimeric repressors that confer salt and osmotic stress tolerance in arabidopsis'. Together they form a unique fingerprint.

Cite this