TY - JOUR
T1 - Impact of Entanglement Density on Solution Electrospinning
T2 - A Phenomenological Model for Fiber Diameter
AU - Wang, Chi
AU - Wang, Yu
AU - Hashimoto, Takeji
N1 - Funding Information:
The authors are grateful to the Ministry of Science and Technology, Taiwan, R.O.C., for the research grant (MOST103-2221-E-006-262-MY3, NSC101-2221-E-006-093) that supported this work. This research was, in part, supported by the Ministry of Education, Taiwan, R.O.C. The Aim for the Top University Project to the National Cheng Kung University (NCKU).
Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/10/25
Y1 - 2016/10/25
N2 - The rheological properties of poly(N-isopropylacrylamide, PNIPAM) in dimethylformamide solvent were investigated and correlated with solution electrospinnability. The jet diameter was measured by using the light scattering technique during the electrospinning in the straight jet region prior to the jet whipping. The diameter of the straight jet end is independent of the solution concentration (or viscosity within the range of 15-2000 mPa·s). Thus, the final fiber diameter df observed on the grounded collector is dominantly controlled by the jet-whipping process. According to the present PNIPAM solution and other different polymer solutions, df is correlated with the solution concentration ø. A master curve is constructed by using the following equation: df/df,e = (ø/øe)2.5, where df,e is the diameter of the fibers electrospun from the solutions with an entanglement concentration of øe, above which the specific viscosity starts to increase with ø according to ø3.7 or ø4.7, depending upon the given polymer/solvent pair. The derived exponent of 2.5 is in good agreement with the theoretical exponent value of 2.3 provided that df is proportional to the entanglement density ν(ø) ∼ ø2.3 (entangled strands per unit volume of the solution). Our results imply that the plateau modulus (elasticity) of the entangled polymer solution rather than its viscosity plays a major role in determining the final fiber diameter. The entangled polymer solutions behave like elastic swollen gels during electrospinning because of the high deformation rates. We propose that the deformation-induced structure formation in the jet eventually results in the fiber with the concentration-dependent diameter.
AB - The rheological properties of poly(N-isopropylacrylamide, PNIPAM) in dimethylformamide solvent were investigated and correlated with solution electrospinnability. The jet diameter was measured by using the light scattering technique during the electrospinning in the straight jet region prior to the jet whipping. The diameter of the straight jet end is independent of the solution concentration (or viscosity within the range of 15-2000 mPa·s). Thus, the final fiber diameter df observed on the grounded collector is dominantly controlled by the jet-whipping process. According to the present PNIPAM solution and other different polymer solutions, df is correlated with the solution concentration ø. A master curve is constructed by using the following equation: df/df,e = (ø/øe)2.5, where df,e is the diameter of the fibers electrospun from the solutions with an entanglement concentration of øe, above which the specific viscosity starts to increase with ø according to ø3.7 or ø4.7, depending upon the given polymer/solvent pair. The derived exponent of 2.5 is in good agreement with the theoretical exponent value of 2.3 provided that df is proportional to the entanglement density ν(ø) ∼ ø2.3 (entangled strands per unit volume of the solution). Our results imply that the plateau modulus (elasticity) of the entangled polymer solution rather than its viscosity plays a major role in determining the final fiber diameter. The entangled polymer solutions behave like elastic swollen gels during electrospinning because of the high deformation rates. We propose that the deformation-induced structure formation in the jet eventually results in the fiber with the concentration-dependent diameter.
UR - http://www.scopus.com/inward/record.url?scp=84993949914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84993949914&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.6b00519
DO - 10.1021/acs.macromol.6b00519
M3 - Article
AN - SCOPUS:84993949914
SN - 0024-9297
VL - 49
SP - 7985
EP - 7996
JO - Macromolecules
JF - Macromolecules
IS - 20
ER -