Implementation of an SOC-based four-stage constant current charger for Li-ion batteries

Chien Hsing Lee, Ming Yang Chen, Shih Hsien Hsu, Joe Air Jiang

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


This study implements a possible use of the state of charge (SOC) instead of the charge voltage limit (Vlimit) to control the charging process for a four-stage constant current charging strategy. To determine the charging current in each stage, an iterative optimization procedure based on Taguchi method is employed to find near-optimal values. To control the change of the charging stage and terminate the charging process, the Coulomb counting method combined with battery's open circuit voltage estimation is adopted for SOC estimation. Tests of Sanyo 840 mA h, 3.6 V lithium-ion (Li-ion) batteries have been conducted with a Keithley 2230-30-1 triple power supply and a Prodigit 3332 F dual electronic load. The implemented charger has an input voltage of 12 V, output currents of 1.176 A, 0.840 A, 0.588 A, and 0.336 A, as well as an output voltage ranged from 0.168 V to 0.588 V. By performing the experiments, the proposed charging strategy has shorter charging time than the equivalent constant current constant voltage (CCCV) and the Vlimit-based charging methods. However, it yields a slightly lower charging efficiency than the equivalent CCCV and pulse current charging methods.

Original languageEnglish
Pages (from-to)528-537
Number of pages10
JournalJournal of Energy Storage
Publication statusPublished - 2018 Aug

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering


Dive into the research topics of 'Implementation of an SOC-based four-stage constant current charger for Li-ion batteries'. Together they form a unique fingerprint.

Cite this