In situ creation of surface-enhanced raman scattering active au-auo x nanostructures through electrochemical process for pigment detection

Hsiao Chien Chen, Ching Hsiang Chen, Chia Shuo Hsu, Tai Lung Chen, Mei Yi Liao, Chia Ching Wang, Chia Fen Tsai, Hao Ming Chen

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Roughing the metallic surface via oxidation-reduction cycles (ORC) to integrate the surface plasmon resonance and surface-enhanced Raman scattering (SERS) is predominant in developing sensor systems because of the facile preparation and uniform distribution of nanostructures. Herein, we proposed a distinctive ORC process: the forward potential passed through the oxidation of Au and reached the oxygen evolution reaction, and once the potential briefly remained at the vertex, the various reverse rates were employed to control the reduction state. The created hybrid Au-AuOx possessed electromagnetic and chemical enhancements concurrently, wherein the rough surface provided the strong local electromagnetic fields and significant interaction between AuOx and molecule to improve the charge transfer. The synergistic effects significantly amplified the intensity of Raman signal with an enhancement factor of 5.5 × 106 under the optimal conditions. Furthermore, the prepared SERS substrate can simultaneously identify and quantify the mixed edible pigments, Brilliant Blue FCF and Indigo Carmine, individually. This result suggested that the development of SERS sensor based on the proposed SERS-activated methodology is feasible and reliable.

Original languageEnglish
Pages (from-to)16576-16584
Number of pages9
JournalACS Omega
Volume3
Issue number12
DOIs
Publication statusPublished - 2018 Dec 5

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'In situ creation of surface-enhanced raman scattering active au-auo <sub>x</sub> nanostructures through electrochemical process for pigment detection'. Together they form a unique fingerprint.

Cite this