TY - JOUR
T1 - In vitro and in vivo therapeutics of β-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice
AU - Shih, M. F.
AU - Chen, L. Y.
AU - Tsai, P. J.
AU - Cherng, J. Y.
PY - 2012
Y1 - 2012
N2 - β-thujaplicin, an active constituent from Chamaecyparis obtusa, has been shown to have acaricidal and antimicrobial effects. Very few studies have focused on the potential of the anti-inflammatory effect of β-thujaplicin. Moreover, its capability of inhibiting inflammatory mediators e.g. TNF-α gene transcription, nitric oxide (NO) and prostaglandin E2, remains unknown. Besides those molecular mechanisms behind the anti-inflammatory effect of β-thujaplicin, solid proof of its effectiveness in vivo has not yet been studied. In our study, in vitro effects of β-thujaplicin were verified on RAW 264.7 macrophages which were stimulated by LPS. Indomethacin was used as a positive control. The inducible NO production after stimulation was measured by Griess reagent. PGE2, IL-6 and TNF-α were measured by ELISA methods. Protein expressions of iNOS, COX2, and NF-κB were evaluated by Western blotting. Septic ICR mice were administered 20 mg/kg of LPS and then the mortality rate was monitored. Within the concentration range which was devoid of cytotoxicry, β-thujaplicin exhibited a clear dose-dependent inhibition on LPS-induced NO production. Furthermore, β-thujaplicin inhibited LPS-induced PGE2, IL-6, and TNF-α production as well as iNOS, COX2, and NF-κB protein expression more substantially potent than indomethacin. In agreement with the in vitro study, β-thujaplicin was shown to be effective in vivo for inhibiting LPS-induced NO and TNF-α production and a significant decrease in mortality rate of mice suffering from septic shock was observed. This study demonstrates the potential of β-thujaplicin in treatment of inflammation and sepsis. These effects occur through an efficient blockage of TNF-α and iNOS production. β-thujaplicin efficacy is comparable to that of indomethacin thus it can be a substitution but bear less depletion of PGE2, making this compound very promising in clinical applications.
AB - β-thujaplicin, an active constituent from Chamaecyparis obtusa, has been shown to have acaricidal and antimicrobial effects. Very few studies have focused on the potential of the anti-inflammatory effect of β-thujaplicin. Moreover, its capability of inhibiting inflammatory mediators e.g. TNF-α gene transcription, nitric oxide (NO) and prostaglandin E2, remains unknown. Besides those molecular mechanisms behind the anti-inflammatory effect of β-thujaplicin, solid proof of its effectiveness in vivo has not yet been studied. In our study, in vitro effects of β-thujaplicin were verified on RAW 264.7 macrophages which were stimulated by LPS. Indomethacin was used as a positive control. The inducible NO production after stimulation was measured by Griess reagent. PGE2, IL-6 and TNF-α were measured by ELISA methods. Protein expressions of iNOS, COX2, and NF-κB were evaluated by Western blotting. Septic ICR mice were administered 20 mg/kg of LPS and then the mortality rate was monitored. Within the concentration range which was devoid of cytotoxicry, β-thujaplicin exhibited a clear dose-dependent inhibition on LPS-induced NO production. Furthermore, β-thujaplicin inhibited LPS-induced PGE2, IL-6, and TNF-α production as well as iNOS, COX2, and NF-κB protein expression more substantially potent than indomethacin. In agreement with the in vitro study, β-thujaplicin was shown to be effective in vivo for inhibiting LPS-induced NO and TNF-α production and a significant decrease in mortality rate of mice suffering from septic shock was observed. This study demonstrates the potential of β-thujaplicin in treatment of inflammation and sepsis. These effects occur through an efficient blockage of TNF-α and iNOS production. β-thujaplicin efficacy is comparable to that of indomethacin thus it can be a substitution but bear less depletion of PGE2, making this compound very promising in clinical applications.
UR - http://www.scopus.com/inward/record.url?scp=84861471452&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861471452&partnerID=8YFLogxK
U2 - 10.1177/039463201202500106
DO - 10.1177/039463201202500106
M3 - Article
C2 - 22507316
AN - SCOPUS:84861471452
SN - 0394-6320
VL - 25
SP - 39
EP - 48
JO - International Journal of Immunopathology and Pharmacology
JF - International Journal of Immunopathology and Pharmacology
IS - 1
ER -