In vitro antimicrobial susceptibility data of global meropenem-resistant Acinetobacter baumannii isolates causing pneumonia: Data from the Antimicrobial Testing Leadership and Surveillance Program, 2014–2021, and re-estimations of susceptibility breakpoints and appropriate dosages of important antibiotics for pneumonia treatment

Shun Chung Hsueh, Yu Tsung Huang, Wen Chien Ko, I. Min Liu, Po Chuen Hsieh, Shio Shin Jean

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Objectives: To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. Methods: We extracted the 2014–2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. Results: Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58–72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. Conclusions: After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.

Original languageEnglish
Pages (from-to)411-418
Number of pages8
JournalJournal of Global Antimicrobial Resistance
Volume36
DOIs
Publication statusPublished - 2024 Mar

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology and Allergy
  • Immunology
  • Microbiology (medical)

Fingerprint

Dive into the research topics of 'In vitro antimicrobial susceptibility data of global meropenem-resistant Acinetobacter baumannii isolates causing pneumonia: Data from the Antimicrobial Testing Leadership and Surveillance Program, 2014–2021, and re-estimations of susceptibility breakpoints and appropriate dosages of important antibiotics for pneumonia treatment'. Together they form a unique fingerprint.

Cite this