TY - GEN
T1 - In vitro assessments of viscoelastic properties of fibrin clot by using acoustic radiation force on a solid sphere
AU - Shih, Cho Chiang
AU - Liu, Ting Yu
AU - Huang, Chih-Chung
PY - 2010/12/1
Y1 - 2010/12/1
N2 - In present study, the effect of red blood cells concentration on the clot viscoelastic properties was assessed by acoustic radiation force technique in vitro. The experiments were performed on porcine whole blood with different hematocrits from 0 to 40%. Clot formation was induced by adding 2 ml of 0.5 M CaCl2 solution into a 20-ml blood sample. The viscoelastic properties of clot were estimated by detecting the displacement of a solid sphere within clot in response to the applied acoustic radiation force. In experimental system, the solid sphere was pushed by a 1 MHz single element focused transducer. Another single element focused transducer with a center frequency of 20 MHz was used to track the displacements of sphere. For each clot sample, acoustic radiation force tone bursts of 0.25 ms to 7 ms are applied in consecutive experiments. The spatio-temporal behavior of the displacement of sphere was used to assess the viscoelastic properties of clot (with different hematocrits). The experimental result indicates that the value of shear modulus of blood clot decreased from 585±127 Pa at plasma to 168±26 Pa at 40% hematocrit. This result can be used to explain that the concentration of fibrinogen plays the major role in clot elastic properties. In addition, the viscoelastic properties of blood clot can be assessed using a temporal behavior rather than a spatial approach.
AB - In present study, the effect of red blood cells concentration on the clot viscoelastic properties was assessed by acoustic radiation force technique in vitro. The experiments were performed on porcine whole blood with different hematocrits from 0 to 40%. Clot formation was induced by adding 2 ml of 0.5 M CaCl2 solution into a 20-ml blood sample. The viscoelastic properties of clot were estimated by detecting the displacement of a solid sphere within clot in response to the applied acoustic radiation force. In experimental system, the solid sphere was pushed by a 1 MHz single element focused transducer. Another single element focused transducer with a center frequency of 20 MHz was used to track the displacements of sphere. For each clot sample, acoustic radiation force tone bursts of 0.25 ms to 7 ms are applied in consecutive experiments. The spatio-temporal behavior of the displacement of sphere was used to assess the viscoelastic properties of clot (with different hematocrits). The experimental result indicates that the value of shear modulus of blood clot decreased from 585±127 Pa at plasma to 168±26 Pa at 40% hematocrit. This result can be used to explain that the concentration of fibrinogen plays the major role in clot elastic properties. In addition, the viscoelastic properties of blood clot can be assessed using a temporal behavior rather than a spatial approach.
UR - http://www.scopus.com/inward/record.url?scp=80054745739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054745739&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2010.5935691
DO - 10.1109/ULTSYM.2010.5935691
M3 - Conference contribution
AN - SCOPUS:80054745739
SN - 9781457703829
T3 - Proceedings - IEEE Ultrasonics Symposium
SP - 479
EP - 482
BT - 2010 IEEE International Ultrasonics Symposium, IUS 2010
T2 - 2010 IEEE International Ultrasonics Symposium, IUS 2010
Y2 - 11 October 2010 through 14 October 2010
ER -