In vitro evaluation of hemodynamic performance for right ventricular outflow tract reconstruction with trileaflet ePTFE valved conduit

Wei Ling Chen, Chiu Chin Wu, Chung-Dann Kan

Research output: Contribution to journalConference article

Abstract

Right ventricle to pulmonary artery (RV-PA) continuity reconstruction traditionally is treaded by open repair with pulmonary valve implantation or replacement. Percutaneous pulmonary valve implantation (PPVI) has evolved as most exciting development surgical strategy with dysfunctional right ventricle-pulmonary artery conduits. However, size restrictions of the currently available valves for PPVI application prevents development in a larger pool of patients. We propose a formula for designing handmade trileaflet-valved conduits with different diameters. The formula is derived from a trigonometric function and can be used to estimate the optimal parameters for ePTFE-valved conduits for young adults and children. The purpose of this study is to investigate the hemodynamic and functional consequences of the new design using a mock circulation system. We recorded the diastolic valve leakage and calculated pulmonary regurgitation, regurgitation fraction, and ejection efficiency in pulsatile setting. Additionally, the prosthetic leaflet behavior was assessed with an endoscope camera and the pressure drops through valves were measured. All the in vitro parameters indicated that the ePTFE-valved conduits did not have an inferior outcome compared with commercial mechanical or tissue valve conduits and could decrease the regurgitation volume and increase the efficiency. Compatible early clinical outcomes were also found among ePTFE-valved conduits and other valved conduits used for RVOT reconstruction, and ePTFE-valved conduits could be implanted in patients of a significantly smaller size. In vitro experimental study provided evidence that a handmade ePTFE-valved conduit could be an attractive alternative to other commercialized valved conduits used for surgical Right ventricle to pulmonary artery (RV-PA) continuity reconstruction.

LanguageEnglish
Pages519-524
Number of pages6
JournalIFMBE Proceedings
Volume68
Issue number1
DOIs
Publication statusPublished - 2019 Jan 1
EventWorld Congress on Medical Physics and Biomedical Engineering, WC 2018 - Prague, Czech Republic
Duration: 2018 Jun 32018 Jun 8

Fingerprint

Hemodynamics
Reconstruction (structural)
Endoscopy
Prosthetics
Pressure drop
Repair
Cameras
Tissue

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomedical Engineering

Cite this

@article{10865e801ed24a48b7b9a2dfd03d49f2,
title = "In vitro evaluation of hemodynamic performance for right ventricular outflow tract reconstruction with trileaflet ePTFE valved conduit",
abstract = "Right ventricle to pulmonary artery (RV-PA) continuity reconstruction traditionally is treaded by open repair with pulmonary valve implantation or replacement. Percutaneous pulmonary valve implantation (PPVI) has evolved as most exciting development surgical strategy with dysfunctional right ventricle-pulmonary artery conduits. However, size restrictions of the currently available valves for PPVI application prevents development in a larger pool of patients. We propose a formula for designing handmade trileaflet-valved conduits with different diameters. The formula is derived from a trigonometric function and can be used to estimate the optimal parameters for ePTFE-valved conduits for young adults and children. The purpose of this study is to investigate the hemodynamic and functional consequences of the new design using a mock circulation system. We recorded the diastolic valve leakage and calculated pulmonary regurgitation, regurgitation fraction, and ejection efficiency in pulsatile setting. Additionally, the prosthetic leaflet behavior was assessed with an endoscope camera and the pressure drops through valves were measured. All the in vitro parameters indicated that the ePTFE-valved conduits did not have an inferior outcome compared with commercial mechanical or tissue valve conduits and could decrease the regurgitation volume and increase the efficiency. Compatible early clinical outcomes were also found among ePTFE-valved conduits and other valved conduits used for RVOT reconstruction, and ePTFE-valved conduits could be implanted in patients of a significantly smaller size. In vitro experimental study provided evidence that a handmade ePTFE-valved conduit could be an attractive alternative to other commercialized valved conduits used for surgical Right ventricle to pulmonary artery (RV-PA) continuity reconstruction.",
author = "Chen, {Wei Ling} and Wu, {Chiu Chin} and Chung-Dann Kan",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/978-981-10-9035-6_96",
language = "English",
volume = "68",
pages = "519--524",
journal = "IFMBE Proceedings",
issn = "1680-0737",
publisher = "Springer Verlag",
number = "1",

}

In vitro evaluation of hemodynamic performance for right ventricular outflow tract reconstruction with trileaflet ePTFE valved conduit. / Chen, Wei Ling; Wu, Chiu Chin; Kan, Chung-Dann.

In: IFMBE Proceedings, Vol. 68, No. 1, 01.01.2019, p. 519-524.

Research output: Contribution to journalConference article

TY - JOUR

T1 - In vitro evaluation of hemodynamic performance for right ventricular outflow tract reconstruction with trileaflet ePTFE valved conduit

AU - Chen, Wei Ling

AU - Wu, Chiu Chin

AU - Kan, Chung-Dann

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Right ventricle to pulmonary artery (RV-PA) continuity reconstruction traditionally is treaded by open repair with pulmonary valve implantation or replacement. Percutaneous pulmonary valve implantation (PPVI) has evolved as most exciting development surgical strategy with dysfunctional right ventricle-pulmonary artery conduits. However, size restrictions of the currently available valves for PPVI application prevents development in a larger pool of patients. We propose a formula for designing handmade trileaflet-valved conduits with different diameters. The formula is derived from a trigonometric function and can be used to estimate the optimal parameters for ePTFE-valved conduits for young adults and children. The purpose of this study is to investigate the hemodynamic and functional consequences of the new design using a mock circulation system. We recorded the diastolic valve leakage and calculated pulmonary regurgitation, regurgitation fraction, and ejection efficiency in pulsatile setting. Additionally, the prosthetic leaflet behavior was assessed with an endoscope camera and the pressure drops through valves were measured. All the in vitro parameters indicated that the ePTFE-valved conduits did not have an inferior outcome compared with commercial mechanical or tissue valve conduits and could decrease the regurgitation volume and increase the efficiency. Compatible early clinical outcomes were also found among ePTFE-valved conduits and other valved conduits used for RVOT reconstruction, and ePTFE-valved conduits could be implanted in patients of a significantly smaller size. In vitro experimental study provided evidence that a handmade ePTFE-valved conduit could be an attractive alternative to other commercialized valved conduits used for surgical Right ventricle to pulmonary artery (RV-PA) continuity reconstruction.

AB - Right ventricle to pulmonary artery (RV-PA) continuity reconstruction traditionally is treaded by open repair with pulmonary valve implantation or replacement. Percutaneous pulmonary valve implantation (PPVI) has evolved as most exciting development surgical strategy with dysfunctional right ventricle-pulmonary artery conduits. However, size restrictions of the currently available valves for PPVI application prevents development in a larger pool of patients. We propose a formula for designing handmade trileaflet-valved conduits with different diameters. The formula is derived from a trigonometric function and can be used to estimate the optimal parameters for ePTFE-valved conduits for young adults and children. The purpose of this study is to investigate the hemodynamic and functional consequences of the new design using a mock circulation system. We recorded the diastolic valve leakage and calculated pulmonary regurgitation, regurgitation fraction, and ejection efficiency in pulsatile setting. Additionally, the prosthetic leaflet behavior was assessed with an endoscope camera and the pressure drops through valves were measured. All the in vitro parameters indicated that the ePTFE-valved conduits did not have an inferior outcome compared with commercial mechanical or tissue valve conduits and could decrease the regurgitation volume and increase the efficiency. Compatible early clinical outcomes were also found among ePTFE-valved conduits and other valved conduits used for RVOT reconstruction, and ePTFE-valved conduits could be implanted in patients of a significantly smaller size. In vitro experimental study provided evidence that a handmade ePTFE-valved conduit could be an attractive alternative to other commercialized valved conduits used for surgical Right ventricle to pulmonary artery (RV-PA) continuity reconstruction.

UR - http://www.scopus.com/inward/record.url?scp=85048304139&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048304139&partnerID=8YFLogxK

U2 - 10.1007/978-981-10-9035-6_96

DO - 10.1007/978-981-10-9035-6_96

M3 - Conference article

VL - 68

SP - 519

EP - 524

JO - IFMBE Proceedings

T2 - IFMBE Proceedings

JF - IFMBE Proceedings

SN - 1680-0737

IS - 1

ER -