TY - GEN
T1 - Inertance effects to diffuser micropumps flow rate spectrum
AU - Le, Ngoc Bich
AU - Hsu, Yi Chu
AU - Lin, Mau Sheng
AU - Jang, Ling Sheng
PY - 2008
Y1 - 2008
N2 - This study presents a diffuser micropump and characterizes its output flow rates, like the parabola shape on the frequency domain and the effecting factors. First, equivalent circuit using fluid-electric analogy was built up; then, the flow rate analysis results were compared to experiment results to verify the applicability of the circuit simulation. The operation frequency was 800 Hz for both cases and the maximum flow rates were 0,078 and 0,075 μ1/s for simulation and experiment result, respectively. The maximum flow rate difference was 3.7%. The circuit then was used to analyze the inertial effects of transferred fluid as well as system components to the output flow rates. This work also explains why the flow rate spectrum has the shape of parabola. The analysis results showed that without inertial effects, the micropump flow rates are linearly proportional to the operation frequency; otherwise it has parabola shape. The natural frequency of the actuatormembrane structure was recognized using finite element method to verify if this parameter affects the characteristics of the flow rates. The experiment and simulation results demonstrated 800 Hz and 91.4 kHz for the frequency of the maximum pumping flow rate and the first mode natural frequency of actuator-membrane structure, respectively. It indicates that the structure natural frequencies of the actuatormembrane structure do not play any role to operate the micropumps.
AB - This study presents a diffuser micropump and characterizes its output flow rates, like the parabola shape on the frequency domain and the effecting factors. First, equivalent circuit using fluid-electric analogy was built up; then, the flow rate analysis results were compared to experiment results to verify the applicability of the circuit simulation. The operation frequency was 800 Hz for both cases and the maximum flow rates were 0,078 and 0,075 μ1/s for simulation and experiment result, respectively. The maximum flow rate difference was 3.7%. The circuit then was used to analyze the inertial effects of transferred fluid as well as system components to the output flow rates. This work also explains why the flow rate spectrum has the shape of parabola. The analysis results showed that without inertial effects, the micropump flow rates are linearly proportional to the operation frequency; otherwise it has parabola shape. The natural frequency of the actuatormembrane structure was recognized using finite element method to verify if this parameter affects the characteristics of the flow rates. The experiment and simulation results demonstrated 800 Hz and 91.4 kHz for the frequency of the maximum pumping flow rate and the first mode natural frequency of actuator-membrane structure, respectively. It indicates that the structure natural frequencies of the actuatormembrane structure do not play any role to operate the micropumps.
UR - http://www.scopus.com/inward/record.url?scp=49449102088&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49449102088&partnerID=8YFLogxK
U2 - 10.1115/MNHT2008-52047
DO - 10.1115/MNHT2008-52047
M3 - Conference contribution
AN - SCOPUS:49449102088
SN - 0791842924
SN - 9780791842928
T3 - 2008 Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, MNHT 2008
SP - 87
EP - 96
BT - 2008 Proceedings of the ASME Micro/Nanoscale Heat Transfer International Conference, MNHT 2008
T2 - 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08
Y2 - 6 January 2008 through 9 January 2008
ER -