Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model

Kuo-En Ching, Kaj M. Johnson, Ruey-Juin Rau, Ray Y. Chuang, Long Chen Kuo, Pei Ling Leu

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~23km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°-344° with dip of 26°-41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5MPa. The derived geodetic moment of 2.92×1018N-m is equivalent to a Mw=6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24km and maximum slip of 190mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7-15km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~20-23km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.

Original languageEnglish
Pages (from-to)78-86
Number of pages9
JournalEarth and Planetary Science Letters
Volume301
Issue number1-2
DOIs
Publication statusPublished - 2011 Jan 3

Fingerprint

fault geometry
fault slip
Taiwan
Earthquakes
slip
earthquakes
ramps
earthquake
Geometry
thrust fault
geometry
detachment
transfer zone
thrust
inversions
stress change
fold and thrust belt
active fault
dipping
mountains

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

@article{782558d9a74c4d809e9a510921f9eb44,
title = "Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model",
abstract = "We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~23km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°-344° with dip of 26°-41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5MPa. The derived geodetic moment of 2.92×1018N-m is equivalent to a Mw=6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24km and maximum slip of 190mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7-15km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~20-23km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.",
author = "Kuo-En Ching and Johnson, {Kaj M.} and Ruey-Juin Rau and Chuang, {Ray Y.} and Kuo, {Long Chen} and Leu, {Pei Ling}",
year = "2011",
month = "1",
day = "3",
doi = "10.1016/j.epsl.2010.10.021",
language = "English",
volume = "301",
pages = "78--86",
journal = "Earth and Planetary Science Letters",
issn = "0012-821X",
publisher = "Elsevier",
number = "1-2",

}

Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. / Ching, Kuo-En; Johnson, Kaj M.; Rau, Ruey-Juin; Chuang, Ray Y.; Kuo, Long Chen; Leu, Pei Ling.

In: Earth and Planetary Science Letters, Vol. 301, No. 1-2, 03.01.2011, p. 78-86.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model

AU - Ching, Kuo-En

AU - Johnson, Kaj M.

AU - Rau, Ruey-Juin

AU - Chuang, Ray Y.

AU - Kuo, Long Chen

AU - Leu, Pei Ling

PY - 2011/1/3

Y1 - 2011/1/3

N2 - We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~23km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°-344° with dip of 26°-41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5MPa. The derived geodetic moment of 2.92×1018N-m is equivalent to a Mw=6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24km and maximum slip of 190mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7-15km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~20-23km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.

AB - We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~23km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°-344° with dip of 26°-41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5MPa. The derived geodetic moment of 2.92×1018N-m is equivalent to a Mw=6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24km and maximum slip of 190mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7-15km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~20-23km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.

UR - http://www.scopus.com/inward/record.url?scp=78650301665&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650301665&partnerID=8YFLogxK

U2 - 10.1016/j.epsl.2010.10.021

DO - 10.1016/j.epsl.2010.10.021

M3 - Article

VL - 301

SP - 78

EP - 86

JO - Earth and Planetary Science Letters

JF - Earth and Planetary Science Letters

SN - 0012-821X

IS - 1-2

ER -