Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data

Tzu Hsien Yang, Wei-Sheng Wu

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Background: Chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive experimental approaches for mapping the binding of transcription factors (TFs) to their target genes. However, ChIP data alone is insufficient for identifying functional binding target genes of TFs for two reasons. First, there is an inherent high false positive/negative rate in ChIP-chip or ChIP-seq experiments. Second, binding signals in the ChIP data do not necessarily imply functionality. Methods: It is known that ChIP-chip data and TF knockout (TFKO) data reveal complementary information on gene regulation. While ChIP-chip data can provide TF-gene binding pairs, TFKO data can provide TF-gene regulation pairs. Therefore, we propose a novel network approach for identifying functional TF-gene binding pairs by integrating the ChIP-chip data with the TFKO data. In our method, a TF-gene binding pair from the ChIP-chip data is regarded to be functional if it also has high confident curated TFKO TF-gene regulatory relation or deduced hypostatic TF-gene regulatory relation. Results and conclusions: We first validated our method on a gathered ground truth set. Then we applied our method to the ChIP-chip data to identify functional TF-gene binding pairs. The biological significance of our identified functional TF-gene binding pairs was shown by assessing their functional enrichment, the prevalence of protein-protein interaction, and expression coherence. Our results outperformed the results of three existing methods across all measures. And our identified functional targets of TFs also showed statistical significance over the randomly assigned TF-gene pairs. We also showed that our method is dataset independent and can apply to ChIP-seq data and the E. coli genome. Finally, we provided an example showing the biological applicability of our notion.

Original languageEnglish
Article numberS13
JournalBMC systems biology
Volume7
DOIs
Publication statusPublished - 2013 Jan 1

Fingerprint

Integrating Factor
Transcription factors
Transcription Factor
Chromatin Immunoprecipitation
Chromatin
Transcription Factors
Genes
Gene
Chip
Gene Regulation
Regulator Genes
Gene expression
Target
Proteins
Statistical Significance
Protein-protein Interaction
False Positive
Escherichia coli
Escherichia Coli

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Modelling and Simulation
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Cite this

@article{0ce8eb2e48d94e59b0fa3f3727bb9eb0,
title = "Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data",
abstract = "Background: Chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive experimental approaches for mapping the binding of transcription factors (TFs) to their target genes. However, ChIP data alone is insufficient for identifying functional binding target genes of TFs for two reasons. First, there is an inherent high false positive/negative rate in ChIP-chip or ChIP-seq experiments. Second, binding signals in the ChIP data do not necessarily imply functionality. Methods: It is known that ChIP-chip data and TF knockout (TFKO) data reveal complementary information on gene regulation. While ChIP-chip data can provide TF-gene binding pairs, TFKO data can provide TF-gene regulation pairs. Therefore, we propose a novel network approach for identifying functional TF-gene binding pairs by integrating the ChIP-chip data with the TFKO data. In our method, a TF-gene binding pair from the ChIP-chip data is regarded to be functional if it also has high confident curated TFKO TF-gene regulatory relation or deduced hypostatic TF-gene regulatory relation. Results and conclusions: We first validated our method on a gathered ground truth set. Then we applied our method to the ChIP-chip data to identify functional TF-gene binding pairs. The biological significance of our identified functional TF-gene binding pairs was shown by assessing their functional enrichment, the prevalence of protein-protein interaction, and expression coherence. Our results outperformed the results of three existing methods across all measures. And our identified functional targets of TFs also showed statistical significance over the randomly assigned TF-gene pairs. We also showed that our method is dataset independent and can apply to ChIP-seq data and the E. coli genome. Finally, we provided an example showing the biological applicability of our notion.",
author = "Yang, {Tzu Hsien} and Wei-Sheng Wu",
year = "2013",
month = "1",
day = "1",
doi = "10.1186/1752-0509-7-S6-S13",
language = "English",
volume = "7",
journal = "BMC Systems Biology",
issn = "1752-0509",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data

AU - Yang, Tzu Hsien

AU - Wu, Wei-Sheng

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Background: Chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive experimental approaches for mapping the binding of transcription factors (TFs) to their target genes. However, ChIP data alone is insufficient for identifying functional binding target genes of TFs for two reasons. First, there is an inherent high false positive/negative rate in ChIP-chip or ChIP-seq experiments. Second, binding signals in the ChIP data do not necessarily imply functionality. Methods: It is known that ChIP-chip data and TF knockout (TFKO) data reveal complementary information on gene regulation. While ChIP-chip data can provide TF-gene binding pairs, TFKO data can provide TF-gene regulation pairs. Therefore, we propose a novel network approach for identifying functional TF-gene binding pairs by integrating the ChIP-chip data with the TFKO data. In our method, a TF-gene binding pair from the ChIP-chip data is regarded to be functional if it also has high confident curated TFKO TF-gene regulatory relation or deduced hypostatic TF-gene regulatory relation. Results and conclusions: We first validated our method on a gathered ground truth set. Then we applied our method to the ChIP-chip data to identify functional TF-gene binding pairs. The biological significance of our identified functional TF-gene binding pairs was shown by assessing their functional enrichment, the prevalence of protein-protein interaction, and expression coherence. Our results outperformed the results of three existing methods across all measures. And our identified functional targets of TFs also showed statistical significance over the randomly assigned TF-gene pairs. We also showed that our method is dataset independent and can apply to ChIP-seq data and the E. coli genome. Finally, we provided an example showing the biological applicability of our notion.

AB - Background: Chromatin immunoprecipitation (ChIP) experiments are now the most comprehensive experimental approaches for mapping the binding of transcription factors (TFs) to their target genes. However, ChIP data alone is insufficient for identifying functional binding target genes of TFs for two reasons. First, there is an inherent high false positive/negative rate in ChIP-chip or ChIP-seq experiments. Second, binding signals in the ChIP data do not necessarily imply functionality. Methods: It is known that ChIP-chip data and TF knockout (TFKO) data reveal complementary information on gene regulation. While ChIP-chip data can provide TF-gene binding pairs, TFKO data can provide TF-gene regulation pairs. Therefore, we propose a novel network approach for identifying functional TF-gene binding pairs by integrating the ChIP-chip data with the TFKO data. In our method, a TF-gene binding pair from the ChIP-chip data is regarded to be functional if it also has high confident curated TFKO TF-gene regulatory relation or deduced hypostatic TF-gene regulatory relation. Results and conclusions: We first validated our method on a gathered ground truth set. Then we applied our method to the ChIP-chip data to identify functional TF-gene binding pairs. The biological significance of our identified functional TF-gene binding pairs was shown by assessing their functional enrichment, the prevalence of protein-protein interaction, and expression coherence. Our results outperformed the results of three existing methods across all measures. And our identified functional targets of TFs also showed statistical significance over the randomly assigned TF-gene pairs. We also showed that our method is dataset independent and can apply to ChIP-seq data and the E. coli genome. Finally, we provided an example showing the biological applicability of our notion.

UR - http://www.scopus.com/inward/record.url?scp=84908539877&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908539877&partnerID=8YFLogxK

U2 - 10.1186/1752-0509-7-S6-S13

DO - 10.1186/1752-0509-7-S6-S13

M3 - Article

VL - 7

JO - BMC Systems Biology

JF - BMC Systems Biology

SN - 1752-0509

M1 - S13

ER -