Influences of waste cooking oil-based biodiesel blends on PAH and PCDD/F emissions from diesel engines in durability testing cycle

Farran Mack Redfern, Sheng Lun Lin, Lin Chi Wang, Shun I. Shih

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

In this study, the 60,000-km durability tests were performed on two diesel engines (EURO IV and EURO II) by using B10 (10% waste cooking oil + 90% diesel) and B8 (8% waste cooking oil + 92% diesel), respectively, to determine the impacts on the emissions of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/Fs). The above emissions were measured per 20,000-km testing intervals. The highest total PAH mass concentrations were 38.2 and 25.6 µg Nm–3 before durability test by using EURO IV and II engines, respectively, and decreased 51–55% after 60,000-km operation. The dominant congeners of PAH emissions were naphthalene (> 45%), pyrene, and phenanthrene, which belonged to the LM-PAHs. The total PAH BaPeq had different emission trends between two engines during the durability tests. The highest level was 2.17 µg BaPeq Nm–3 from EURO II engine before test and reduced 84% after a 60,000-km cycle, when the total-BaPeq emissions of EURO IV tended to increase from 0.0894 to 0.154 µg BaPeq Nm–3 after the same test. The most dominant congener to the toxicity emissions was benzo(a)pyrene (~70%). Additionally, the PCDD/F emissions were tested in EURO IV engine by using B10. The PCDD/F concentrations of mass and toxicity approached the highest levels, 167 ng Nm–3 and 3.69 pg WHO-TEQ Nm–3, after 60,000-km and 20,000-km running cycles, respectively. The main dominant congeners were OCDD (> 50%) for mass, 2,3,7,8-TeCDD (> 35%) and 1,2,3,7,8-PeCDD (> 18%) for toxicity. Consequently, the use of WCO-biodiesel might reduce the PAH mass and toxicity emissions in older engine but had no significant effect in PAH and PCDD/F emission during the deterioration of a newer engine.

Original languageEnglish
Pages (from-to)1224-1233
Number of pages10
JournalAerosol and Air Quality Research
Volume17
Issue number5
DOIs
Publication statusPublished - 2017 May

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'Influences of waste cooking oil-based biodiesel blends on PAH and PCDD/F emissions from diesel engines in durability testing cycle'. Together they form a unique fingerprint.

Cite this